POJ 1141 Brackets Sequence(DP)
Brackets Sequence
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 18313 | Accepted: 5020 | Special Judge |
Description
Let us define a regular brackets sequence in the following way:
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
Input
The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.
Output
Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.
Sample Input
([(]
Sample Output
()[()]
Source
题目描述:
给出一个由(、)、[、]组成的字符串,添加最少的括号使得所有的括号匹配,输出最后得到的字符串。
解题思路:
用DP求最少需要括号数:以p从1到n(字符串长度),记录下从i到i+p需要添加的最少括号数f[i][j],同时记录下中间需要添加括号的位置pos[i][j]——为-1表示不需要添加。
给出一个由(、)、[、]组成的字符串,添加最少的括号使得所有的括号匹配,输出最后得到的字符串。
解题思路:
用DP求最少需要括号数:以p从1到n(字符串长度),记录下从i到i+p需要添加的最少括号数f[i][j],同时记录下中间需要添加括号的位置pos[i][j]——为-1表示不需要添加。
DP
#include<stdio.h>
#include<string.h>
#define MAXN 120
const int INF=0x7fffffff;
int f[MAXN][MAXN],pos[MAXN][MAXN];
char s[MAXN];
int n;
int DP()
{
n=strlen(s);
memset(f,0,sizeof(f));
for(int i=n;i>0;i--)
{
s[i]=s[i-1];
f[i][i]=1;
}
int tmp;
for(int p=1;p<=n;p++)
{
for(int i=1;i<=n-p;i++)
{
int j=i+p;
f[i][j]=INF;
if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
{
tmp=f[i+1][j-1];
if(tmp<f[i][j])
f[i][j]=tmp;
}
pos[i][j]=-1;
for(int k=i;k<j;k++)
{
tmp=f[i][k]+f[k+1][j];
if(tmp<f[i][j])
{
f[i][j]=tmp;
pos[i][j]=k;
}
}
}
}
return f[1][n];
}
void print(int beg,int end)
{
if(beg>end)return ;
if(beg==end)
{
if(s[beg]=='('||s[beg]==')')
printf("()");
else printf("[]");
}
else
{
if(pos[beg][end]==-1)
{
if(s[beg]=='(')
{
printf("(");
print(beg+1,end-1);
printf(")");
}
else
{
printf("[");
print(beg+1,end-1);
printf("]");
}
}
else
{
print(beg,pos[beg][end]);
print(pos[beg][end]+1,end);
}
}
}
int main()
{
// while(scanf("%s",&s)!=EOF) //这样输入会 WR
scanf("%s",&s);
DP();
print(1,n);
printf("\n");
return 0;
}
人一我百!人十我万!永不放弃~~~怀着自信的心,去追逐梦想