C++STL的next_permutation
C++STL的next_permutation
在标准库算法中,next_permutation应用在数列操作上比较广泛.这个函数可以计算一组数据的全排列.但是怎么用,原理如何,我做了简单的剖析.
首先查看stl中相关信息.
函数原型:
template<class BidirectionalIterator>
bool next_permutation(
BidirectionalIterator _First,
BidirectionalIterator _Last
);
template<class BidirectionalIterator, class BinaryPredicate>
bool next_permutation(
BidirectionalIterator _First,
BidirectionalIterator _Last,
BinaryPredicate _Comp
);
两个重载函数,第二个带谓词参数_Comp,其中只带两个参数的版本,默认谓词函数为"小于".
返回值:bool类型
分析next_permutation函数执行过程:
假设数列 d1,d2,d3,d4……
范围由[first,last)标记,调用next_permutation使数列逐次增大,这个递增过程按照字典序。例如,在字母表中,abcd的下一单词排列为abdc,但是,有一关键点,如何确定这个下一排列为字典序中的next,而不是next->next->next……
若当前调用排列到达最大字典序,比如dcba,就返回false,同时重新设置该排列为最小字典序。
返回为true表示生成下一排列成功。下面着重分析此过程:
根据标记从后往前比较相邻两数据,若前者小于(默认为小于)后者,标志前者为X1(位置PX)表示将被替换,再次重后往前搜索第一个不小于X1的数据,标记为X2。交换X1,X2,然后把[PX+1,last)标记范围置逆。完成。
要点:为什么这样就可以保证得到的为最小递增。
从位置first开始原数列与新数列不同的数据位置是PX,并且新数据为X2。[PX+1,last)总是递减的,[first,PX)没有改变,因为X2>X1,所以不管X2后面怎样排列都比原数列大,反转[PX+1,last)使此子数列(递增)为最小。从而保证的新数列为原数列的字典序排列next。
明白了这个原理后,看下面例子:
int main(){
int a[] = {3,1,2};
do{
cout << a[0] << " " << a[1] << " " << a[2] << endl;
}
while (next_permutation(a,a+3));
return 0;
}
输出:312/321 因为原数列不是从最小字典排列开始。
所以要想得到所有全排列
int a[] = {3,1,2}; change to int a[] = {1,2,3};
另外,库中另一函数prev_permutation与next_permutation相反,由原排列得到字典序中上一次最近排列。
所以
int main(){
int a[] = {3,2,1};
do{
cout << a[0] << " " << a[1] << " " << a[2] << endl;
}
while (prev_permutation(a,a+3));
return 0;
}
才能得到123的所有排列。
**************************************************************************************************
**************************************************************************************************
next_permutation在algorithm头文件里,可以用它来生成全排列。它的源代码加分析如下
template<class _BidIt> inline
bool _Next_permutation(_BidIt _First, _BidIt _Last)
{ // permute and test for pure ascending, using operator<
//-----------------------------------------------\
_DEBUG_RANGE(_First, _Last);
_BidIt _Next = _Last;
if (_First == _Last || _First == --_Next)
return (false);
//上面这一块是检查边界范围的
//-----------------------------------------------/
for (; ; )
{ // find rightmost element smaller than successor
_BidIt _Next1 = _Next;
if (_DEBUG_LT(*--_Next, *_Next1))
{ // swap with rightmost element that's smaller, flip suffix
_BidIt _Mid = _Last;
for (; !_DEBUG_LT(*_Next, *--_Mid); )
;
std::iter_swap(_Next, _Mid);
//本身带的注释已经说得很明白,从最右边开始比较两两相邻的元素,直至找到右边比左边大的一对,左边那个
//就是将要被替换的,再从最右边开始找比这个元素大的第一个,交换他们两个
std::reverse(_Next1, _Last);
//交换之后,翻转交换元素的后面的所有元素
return (true);
}
if (_Next == _First)
{ // pure descending, flip all
std::reverse(_First, _Last);
return (false);
}
}
}
关键是确定一个排列的下一个排列是什么,我看着明白却说不明白,于是转贴一段,以下来自 http://www.cppblog.com/yindf/archive/2010/02/24/108312.html
abcd next_permutation -> abdc
那么,为什么abcd的下一个是abdc而不是acbd呢?
说简单一点,用 1,2,3,4 代替 a,b,c,d,可以得到:
原排列 中间转换 值
1,2,3,4 3,2,1 ((3 * (3) + 2) * (2) + 1) * (1) = 23
1,2,4,3 3,2,0 ((3 * (3) + 2) * (2) + 0) * (1) = 22
1,3,2,4 3,1,1 ((3 * (3) + 1) * (2) + 1) * (1) = 21
1,3,4,2 3,1,0 ((3 * (3) + 1) * (2) + 0) * (1) = 20
1,4,3,2 3,0,1 ((3 * (3) + 0) * (2) + 1) * (1) = 19
. . .
. . .
. . .
4,3,2,1 0,0,0 ((0 * (3) + 0) * (2) + 0) * (1) = 0
| | | | | |
| | | |
| |
上面的中间转换指的是:每一个数字后面比当前位数字大的数字的个数。比如:
1,3,4,2 中,1 后面有(3, 4, 2) 他们都大于1,所以第一位是 3
3 后面有(4, 2), 但只有4大于3,所以第二位是 1
4 后面有(2), 没有比4 大的,所以第三位是 0
最后一位后面肯定没有更大的,所以省略了一个0。
经过这种转换以后,就得到了一种表示方式(中间转换),这种表达方式和原排列一一对应,可以相互转化。
仔细观察这种中间表达方式,发现它的第一位只能是(0,1,2,3),第二位只能是(0,1,2),第三位只能是(0,1)。通常,数字是用十进制表示的,计算机中用二进制,但是现在,我用一种特殊的进制来表示数:
第一位用1进制,第二位用2进制。。。
于是就得到了这种中间表示方式的十进制值。如:
阶
| | |
1,1,0 ----> ((1 * (3) + 1) * (2) + 0) * (1) = 8
3,1,0 ----> ((3 * (3) + 1) * (2) + 0) * (1) = 20
这样,就可以得到一个十进制数和一个排列之间的一一对应的关系。
现在排列数和有序的十进制数有了一一对应的关系(通过改变对应关系,可以使十进制数升序)。
练习题:
HDU 1027
posted on 2012-03-30 00:44 kuangbin 阅读(10472) 评论(3) 编辑 收藏 举报