韩非囚秦
——独善其身者,难成大事也。

导航

 

一、跟实例创建和执行有关的

  __new__、__init__、__call__.

  类加括号调用了__init__方法来创建一个实例对象。这一过程分成了两步: 类调用__new__来创建实例对象,__new__调用__init__来初始化实例对象。

class A:
    count = 0
    def __init__(self):
        print("__init__ has called. 2")
       
    def __new__(cls):
        print("__new__ has called. 1")
        return object.__new__(cls)
    def __call__(cls):
        print("__call__ has called. 3")
a = A()
a()

"""
__new__ has called. 1
__init__ has called. 2
__call__ has called. 3
"""

  类的__new__()方法很少通过用户代码定义。如果定义了它,它通常是用原型__new__(cls, *args, **kwargs)编写的。其中args和kwargs与传递给__init__()的参数相同。__new__()始终是一个类方法,接受类对象作为第一个参数。尽管__new__()会创建一个实例,但它不会自动地调用__init__()。实例对象加括号会调用__call__方法,一般作为程序的入口,并且可以在这一步修改实例属性或调用实例方法。

class Obj(object):
    def __init__(self, name, price):
        self.name = name
        self.__price = price

    def __say(self):
        print("{}, {}.".format(self.name, self.__price))

    def __call__(self, discount):
        self.__price = discount * self.__price
        self.__say()


apple = Obj("apple", 10.0)
apple(0.8)

二、跟实例属性有关的

  __getattribute__,  __getattr__,  __setattr__, __delattr__、__getitem__、__setitem__、__delitem__、__missing__

  在__init__时,会调用__setattr__初始化实例属性,在__dict__添加键值对。

 

class Sample:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __setattr__(self, key, value):
        print("__setattr__ has called.")
        try:
            self.__dict__[key] = value
        except:
            self.__dict__ = {key: value}

sam = Sample("Li", 24)

# __setattr__ has called.
# __setattr__ has called.

 

  对实例属性的访问时,

  1.首先执行__getattribute__方法(这又是一个特殊方法),去调用object基类的__getattribute__来查询__dict__里的键值对。如果存在则直接返回,相当于执行了member.__dict__.get(obj),如果不存在则调用__getattr__方法。

  2.__getattr__方法会在实例内存空间中尽可能的搜索该属性值,如果搜索到则直接返回,搜索不到会抛出AttributeError。

  注意下面两段代码的区别:__getattribute__的return只是一个硬编码的字符串而不是属性值,__getattr__的return则是实例的属性值。因此,如果有需求,一般会在__getattr__里写需求代码。

 

 

class MemberCounter:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    
    def __getattribute__(self, obj):
        print("__getattribute__ is called.")
        return object.__getattribute__(self, obj)
    
    def __getattr__(self, obj):
        print("__getattr__ is called.")
        return "{} Not assgined.".format(obj)
member = MemberCounter("An", 24)

print(member.name)
print("\n------------------\n")
print(member.gender)

"""
__getattribute__ is called.
An

------------------

__getattribute__ is called.
__getattr__ is called.
gender Not assgined.
"""

 

class MemberCounter:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    def __getattribute__(self, obj):
        if obj == "gender":
            return "male"
        else:
            return object.__getattribute__(self, obj)

member = MemberCounter("An", 24)
print(member.gender)
member.gender = "female"
print(member.gender)
print(member.__dict__)
 
"""
male
male
{'name': 'An', 'age': 24, 'gender': 'female'}
"""
__getattribute__
class MemberCounter:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    def __getattr__(self, obj):
        if obj == "gender":
            return "male"
        else:
            raise AttributeError

member = MemberCounter("An", 24)
print(member.gender)
member.gender = "female"
print(member.gender)
print(member.__dict__)

"""
male
female
{'name': 'An', 'age': 24, 'gender': 'female'}
"""
__getattr__

  当访问一个属性的时候:

    解释器首先在实例的字典中搜索,
    若找不到则去创建这个实例的类的字典中搜索,
    若还找不到就到类的基类中搜索,
    如果还不找不到最后会尝试调用类的__getattr__方法来获取属性值(若类中定义了该方法的话).
    如果这个过程也失败,则引发AttributeError异常

  在使用member.name = "Wei"和del member.age时,实际上调用了__setattr__和__delattr__。这两个函数没有类似__getattribute__的使用规则。即无论何时给属性赋值,都会调用 __setattr__() 方法;无论何时删除一个属性,都将调用 __delattr__() 方法。

class MemberCounter:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __setattr__(self, old, new):
        print("\033[1;36m {} = {} \033[0m has been created.".format(old, new))
        object.__setattr__(self, old, new)

    def __delattr__(self, key):
        print("{} is deleted.".format(key))
        del self.__dict__[key]
        
    def __getattr__(self, item):
        return self.__dict__[item]  # object.__getattr__(self, item)

member = MemberCounter("An", 24)
print(member.__dict__)
del member.age
print(member.__dict__)

"""
name = An  has been created.
age = 24  has been created.
{'name': 'An', 'age': 24}
age is deleted.
{'name': 'An'}
"""
class A:
    def __init__(self, *args):
        self.name, self.age = args
    
    def __getitem__(self, key):
        print("__getitem__ has called.")
        self.__dict__.get(key, ValueError)
    
    def __setitem__(self, key, value):
        print("__setitem__ has called.")
        self.__dict__.update({key: value})
    
    def __delitem__(self, key):
        print("__delitem__ has called.")
        del self.__dict__[key]

a = A("Li", 27)
print(a.__dict__)
a["name"]
print(a.__dict__)
a["name"] = "Alex"
print(a.__dict__)
del a["age"]
print(a.__dict__)

"""
{'name': 'Li', 'age': 27}
__getitem__ has called.
{'name': 'Li', 'age': 27}
__setitem__ has called.
{'name': 'Alex', 'age': 27}
__delitem__ has called.
{'name': 'Alex'}
"""
序号目的所编写代码Python 实际调用
1 获取一个计算属性(无条件的) x.my_property x.__getattribute__('my_property')
2 获取一个计算属性(后备) x.my_property x.__getattr__('my_property')
3 设置某属性 x.my_property = value x.__setattr__('my_property', value)
4 删除某属性 del x.my_property x.__delattr__('my_property')
5 列出所有属性和方法 dir(x) x.__dir__()

 

序号目的所编写代码Python 实际调用
1 通过键来获取值 x[key] x.__getitem__(key)
2 通过键来设置值 x[key] = value x.__setitem__(key, value)
3 删除一个键值对 del x[key] x.__delitem__(key)
4 为缺失键提供默认值 x[nonexistent_key] x.__missing__(nonexistent_key)

三、实例属性的保存格式---__slots__和__dict__

  实例对象通常以字典的形式保存属性, 也即__dict__。这种格式可以被__slots__修改 。下面是从各个python书籍中摘下的关于__slots__描述。

 定义__slots__后,可以在实例上分配的属性名称将被限制为指定的名称,否则将引发AttributeError异常。
 这种限制可以阻止其他人向现有实例添加新属性,解决了用户将值分配给他们无法正确拼写的属性时出现的异常。
 在实际使用时,__slots__从未被当做一种安全的特性来实现。它实际上是对内存和执行速度的一种性能优化。  使用__slots__的类的实例不再使用字典来存储实例数据。相反,会使用基于数组的更加紧凑的数据结构。  在会创建大量对象的程序中,使用__slots__可以显著减少内存占用和执行时间。  __slots__与集成的配合使用需要一定的技巧。如果类继承自使用__slots__的基类,那么它也需要定义__slots__来存储自己的属性(即使它不会添加任何属性)。这样才能充分利用__slots__提供的优势。如果忘记了这一点,派生类的运行速度将更慢,占用的内存也比未在任何类上使用__slots__时多。  __slots__的使用也可以使代码不必要求实例具有底层__slots__属性。尽管这一点通常不适用于用户代码。但可以编写其他支持对象实用工具库和其他工具。依靠__dict__来调试、序列化对象并执行其他操作。  __slots__的存在不会对__getattribute__()、__getattr__()、和__setattr__()等方法的调用产生任何影响。因为这些方法应该在类中重新定义。但是,这些方法的默认行为将考虑到__slots__。
 此外,没用必要向__slots__添加方法或特性名称,因为它们存储在类中,而不是存储在每个实例中。
class MemberCounter:
    __slots__ = ("name", "age")
    # 注意, ()指定存储格式为元组,"name"和"age"严格限制了实例化对象的参数,不可随意增加,但可以删除
    def __init__(self, name, age): # 不可再写*args, **kwargs
        self.name = name
        self.age = age
member = MemberCounter("An", 24, )
# member.__dict__ # 当__slots__被指定时,覆盖了__dict__

print(member.__slots__)
print(member.name, member.age)
# member.gender = "female"  报错
#('name', 'age')
# An 24age"
 如何在定义了__slots__,来储存dict或者list等数据呢?以下面的例子为例:
class Local(object):
    __slots__ = ('__dict__', '__list__')

    def __init__(self, name, age, gender):
        object.__setattr__(self, "__dict__", {})  # 注意,__dict__和__list__只是我随意写的,你可以通篇把__dict__改成dict,照样没有关系
        object.__setattr__(self, "__list__", [])  # 也就是说,__dict__只是一个属性链接,它从__slots__中链接到一个字典对象并提供相关操作

        self.name = name  # 假定你已经知道self.name = name 实际上式调用了__setattr__方法,也就是自动存到了self.__dict__里
        self.age = age
        self.gender = gender

    def __setattr__(self, key, value):
        try:
            self.__dict__[key] = value
        except KeyError:
            self.__dict__ = {key: value}

    def __getattr__(self, name):
        try:
            return self.__dict__[name]
        except KeyError:
            raise AttributeError(name)

    def __delattr__(self, name):
        try:
            del self.__dict__[name]
        except KeyError:
            raise AttributeError(name)


local = Local("Li", 24, "famle")
print(local.__slots__)
print(local.__dict__)
# 0('__dict__', '__list__')
# {'name': 'Li', 'age': 24, 'gender': 'famle'

四、跟运算有关的

  __eq__(==)、__ge__(>=)、__gt__(>)、__le__ (<=)、__lt__ (<)、__ne__ (!=)、__bool__

  参见: http://old.sebug.net/paper/books/dive-into-python3/special-method-names.html

class A:
    def __init__(self, number):
        self.number = number
        
    def __gt__(self, obj):
        print("__gt__ has called.")
        return self.number > obj.number
    
    def __ge__(self, obj):
        print("__ge__ has called.")  # 既然执行了这个函数,你可以尽情的在return之前写想写的功能
        return self.number >= obj.number

a = A(23)    # 当你写 23 > 45时,实际等同于 a = int(23), b = int(45); a > b
b = A(45)    # 这里A就相当于int
c = A(45)

print(a > b)
print(b >= c)

"""
__gt__ has called.
False
__ge__ has called.
True
"""

 

序号目的所编写代码Python 实际调用
1 加法 x + y x.__add__(y)
2 减法 x - y x.__sub__(y)
3 乘法 x * y x.__mul__(y)
4 除法 x / y x.__truediv__(y)
5 地板除 x // y x.__floordiv__(y)
6 取模(取余) x % y x.__mod__(y)
7 地板除 & 取模 divmod(x, y) x.__divmod__(y)
8 乘幂 x ** y x.__pow__(y)
9 左位移 x << y x.__lshift__(y)
10 右位移 x >> y x.__rshift__(y)
11 按位 and x & y x.__and__(y)
12 按位 xor x ^ y x.__xor__(y)
13 按位 or x | y x.__or__(y)

 

此外,还有原地操作:
序号目的所编写代码Python 实际调用
1 原地加法 x += y x.__iadd__(y)
2 原地减法 x -= y x.__isub__(y)
3 原地乘法 x *= y x.__imul__(y)
4 原地除法 x /= y x.__itruediv__(y)
5 原地地板除法 x //= y x.__ifloordiv__(y)
6 原地取模 x %= y x.__imod__(y)
7 原地乘幂 x **= y x.__ipow__(y)
8 原地左位移 x <<= y x.__ilshift__(y)
9 原地右位移 x >>= y x.__irshift__(y)
10 原地按位 and x &= y x.__iand__(y)
11 原地按位 xor x ^= y x.__ixor__(y)
12 原地按位 or x |= y x.__ior__(y)
以及一些自身简单运算:
序号目的所编写代码Python 实际调用
1 负数 -x x.__neg__()
2 正数 +x x.__pos__()
3 绝对值 abs(x) x.__abs__()
4 取反 ~x x.__invert__()
5 复数 complex(x) x.__complex__()
6 整数转换 int(x) x.__int__()
7 浮点数 float(x) x.__float__()
8 四舍五入至最近的整数 round(x) x.__round__()
9 四舍五入至最近的 n 位小数 round(x, n) x.__round__(n)
10 >= x 的最小整数 math.ceil(x) x.__ceil__()
11 <= x的最大整数 math.floor(x) x.__floor__()
12 x 朝向 0 取整 math.trunc(x) x.__trunc__()
13 作为列表索引的数字 a_list[x] a_list[x.__index__()]

五、跟字符串有关的

  __str__、__repr__、__format__、[__bytes__]

  这些都是跟字符串格式和字符串表示有关的特殊方法

 

class Cls(object):
    def __init__(self):
        self.name = "alex"
        self.age = 27
        self.gender = "female"
    def __str__(self):
        print("__str__ has called.")
        return "Str: my name is {}, {}.".format(self.name, self.age)
    def __format__(self, special):
        print("__format__ has called.")
        if special == "":
            return self.__str__()   # 也可以写成str(self)
        for _, v in self.__dict__.items():  # 实际上是{"name": "alex", "age": 27}
            special = special.replace("%s", str(v), 1)
        return special

 

  观察下面二段代码打印的结果:

cls = Cls()
str1 = "{:%s, %s, %s}".format(cls)
print("-------------")
print(str1)


"""
__format__ has called.
-------------
alex, 27, female
"""
cls = Cls()
str2 = format(cls, "my name is %s, %s, %s.")
print("-------------")
print(str2)

"""
__format__ has called.
-------------
my name is alex, 27, female.
"""

  以上两端代码本质都是一样的,即format和一个字符串匹配,也就是__format__函数传递了special参数(字符串)。

  当format函数没有和字符串匹配,也就是__format__函数没有传入参数special时,会调用__str__函数。

 

cls = Cls()

str3 = format(cls)
print("-------------")
print(str3)

"""
__format__ has called.
__str__ has called.
-------------
Str: my name is alex, 27.
"""

 

  str(cls)调用了__str__方法。str(cls)调用__str__方法, string.format(cls)和format(cls)调用__format__方法。

 

cls = Cls()
print(str(cls))

"""
__str__ has called.
Str: my name is alex, 27.
"""

 

  再来看__str__和__repr__的区别和联系。当__str__存在时,print(obj)和str(obj)实际调用了__str__方法;当__str__不存在时,就会调用__repr__。但是当定义了__repr__时,obj本身会返回一个"合法"的字符串表达式,而不再返回一个描述符<'__main__.A object at XXX>,当然这个描述符也可以被__str__修改,只是会被__repr__覆盖。

class A:
    def __str__(self):
        print("__str__ has called.")
        return self.__class__.__name__ + "__str__"

a = A()

a   # <__main__.A at 0x110a764e0>
print(a)  
# __str__ has called.
# A__str__

str(a)
# __str__ has called.
# A__str__
class A:
        def __repr__(self):
        print("__repr__ has called.")
        return self.__class__.__name__ + "__repr__"
a = A()

a
#__repr__ has called.
#A__repr__

print(a)
#__repr__ has called.
#A__repr__

str(a)
#__repr__ has called.
#A__repr__
class A:
    def __str__(self):
        print("__str__ has called.")
        return self.__class__.__name__ + "__str__"
    
    def __repr__(self):
        print("__repr__ has called.")
        return self.__class__.__name__ + "__repr__"
a = A()

a

#__repr__ has called.
#A__repr__

print(a)
#__str__ has called.
#A__str__

str(a)
#__str__ has called.
#'A__str__'
序号目的所编写代码Python 实际调用
1 初始化一个实例 x = MyClass() x.__init__()
2 字符串的“官方”表现形式 repr(x) x.__repr__()
3 字符串的“非正式”值 str(x) x.__str__()
4 字节数组的“非正式”值 bytes(x) x.__bytes__()
5 格式化字符串的值 format(x, format_spec) x.__format__(format_spec)

 

  通常__str__()__repr__()代码都是一样的,所以会这么写:

class Student(object):
    def __init__(self, name):
        self.name = name
    def __str__(self):
        return 'Student object (name=%s)' % self.name
    __repr__ = __str__

六、跟迭代器有关的

序号目的所编写代码Python 实际调用
1 遍历某个序列 iter(seq) seq.__iter__()
2 从迭代器中获取下一个值 next(seq) seq.__next__()
3 按逆序创建一个迭代器 reversed(seq) seq.__reversed__()

  iter内置函数对应的特殊方法是__iter_,它把一个序列变成迭代器。

class Iter:
    def __init__(self, lis):
        self.iterate = lis
    def __iter__(self):
        for v in self.iterate:
            print("__iter__ has called.")
            yield v
            
a = Iter(list(range(5)))
b = iter(a)

print(next(b))
print(next(b))

"""
__iter__ has called.
0
__iter__ has called.
1

"""

  next内置函数对应的特殊方法是__iter_,对迭代器进行迭代(惰性行)。

class Iter:
    count = 0
    def __init__(self, lis):
        self.iterate = lis  
    def __next__(self):
        print("__next__ has called.")
        try:
            value = self.iterate[Iter.count]
            Iter.count += 1
        except StopIteration:
            exit()
        return value
    
a = Iter(list(range(5)))

print(next(a))
print(next(a))

"""
__next__ has called.
0
__next__ has called.
1

"""

  至此我们已了解了绝大部分特殊方法,在python中,类对象的顶层是type类。下面是object类和type类的源码。它们的源码是底层实现的。

class object:
    """ The most base type """
    def __delattr__(self, *args, **kwargs): # real signature unknown
        """ Implement delattr(self, name). """
        pass

    def __dir__(self): # real signature unknown; restored from __doc__
        """
        __dir__() -> list
        default dir() implementation
        """
        return []

    def __eq__(self, *args, **kwargs): # real signature unknown
        """ Return self==value. """
        pass

    def __format__(self, *args, **kwargs): # real signature unknown
        """ default object formatter """
        pass

    def __getattribute__(self, *args, **kwargs): # real signature unknown
        """ Return getattr(self, name). """
        pass

    def __ge__(self, *args, **kwargs): # real signature unknown
        """ Return self>=value. """
        pass

    def __gt__(self, *args, **kwargs): # real signature unknown
        """ Return self>value. """
        pass

    def __hash__(self, *args, **kwargs): # real signature unknown
        """ Return hash(self). """
        pass

    def __init_subclass__(self, *args, **kwargs): # real signature unknown
        """
        This method is called when a class is subclassed.
        
        The default implementation does nothing. It may be
        overridden to extend subclasses.
        """
        pass

    def __init__(self): # known special case of object.__init__
        """ Initialize self.  See help(type(self)) for accurate signature. """
        pass

    def __le__(self, *args, **kwargs): # real signature unknown
        """ Return self<=value. """
        pass

    def __lt__(self, *args, **kwargs): # real signature unknown
        """ Return self<value. """
        pass

    @staticmethod # known case of __new__
    def __new__(cls, *more): # known special case of object.__new__
        """ Create and return a new object.  See help(type) for accurate signature. """
        pass

    def __ne__(self, *args, **kwargs): # real signature unknown
        """ Return self!=value. """
        pass

    def __reduce_ex__(self, *args, **kwargs): # real signature unknown
        """ helper for pickle """
        pass

    def __reduce__(self, *args, **kwargs): # real signature unknown
        """ helper for pickle """
        pass

    def __repr__(self, *args, **kwargs): # real signature unknown
        """ Return repr(self). """
        pass

    def __setattr__(self, *args, **kwargs): # real signature unknown
        """ Implement setattr(self, name, value). """
        pass

    def __sizeof__(self): # real signature unknown; restored from __doc__
        """
        __sizeof__() -> int
        size of object in memory, in bytes
        """
        return 0

    def __str__(self, *args, **kwargs): # real signature unknown
        """ Return str(self). """
        pass

    @classmethod # known case
    def __subclasshook__(cls, subclass): # known special case of object.__subclasshook__
        """
        Abstract classes can override this to customize issubclass().
        
        This is invoked early on by abc.ABCMeta.__subclasscheck__().
        It should return True, False or NotImplemented.  If it returns
        NotImplemented, the normal algorithm is used.  Otherwise, it
        overrides the normal algorithm (and the outcome is cached).
        """
        pass

    __class__ = None # (!) forward: type, real value is ''
    __dict__ = {}
    __doc__ = ''
    __module__ = ''
object
class type(object):
    """
    type(object_or_name, bases, dict)
    type(object) -> the object's type
    type(name, bases, dict) -> a new type
    """
    def mro(self): # real signature unknown; restored from __doc__
        """
        mro() -> list
        return a type's method resolution order
        """
        return []

    def __call__(self, *args, **kwargs): # real signature unknown
        """ Call self as a function. """
        pass

    def __delattr__(self, *args, **kwargs): # real signature unknown
        """ Implement delattr(self, name). """
        pass

    def __dir__(self): # real signature unknown; restored from __doc__
        """
        __dir__() -> list
        specialized __dir__ implementation for types
        """
        return []

    def __getattribute__(self, *args, **kwargs): # real signature unknown
        """ Return getattr(self, name). """
        pass

    def __init__(cls, what, bases=None, dict=None): # known special case of type.__init__
        """
        type(object_or_name, bases, dict)
        type(object) -> the object's type
        type(name, bases, dict) -> a new type
        # (copied from class doc)
        """
        pass

    def __instancecheck__(self): # real signature unknown; restored from __doc__
        """
        __instancecheck__() -> bool
        check if an object is an instance
        """
        return False

    @staticmethod # known case of __new__
    def __new__(*args, **kwargs): # real signature unknown
        """ Create and return a new object.  See help(type) for accurate signature. """
        pass

    def __prepare__(self): # real signature unknown; restored from __doc__
        """
        __prepare__() -> dict
        used to create the namespace for the class statement
        """
        return {}

    def __repr__(self, *args, **kwargs): # real signature unknown
        """ Return repr(self). """
        pass

    def __setattr__(self, *args, **kwargs): # real signature unknown
        """ Implement setattr(self, name, value). """
        pass

    def __sizeof__(self): # real signature unknown; restored from __doc__
        """
        __sizeof__() -> int
        return memory consumption of the type object
        """
        return 0

    def __subclasscheck__(self): # real signature unknown; restored from __doc__
        """
        __subclasscheck__() -> bool
        check if a class is a subclass
        """
        return False

    def __subclasses__(self): # real signature unknown; restored from __doc__
        """ __subclasses__() -> list of immediate subclasses """
        return []

    __abstractmethods__ = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default


    __bases__ = (
        object,
    )
    __base__ = object
    __basicsize__ = 864
    __dictoffset__ = 264
    __dict__ = None # (!) real value is ''
    __flags__ = 2148291584
    __itemsize__ = 40
    __mro__ = (
        None, # (!) forward: type, real value is ''
        object,
    )
    __name__ = 'type'
    __qualname__ = 'type'
    __text_signature__ = None
    __weakrefoffset__ = 368
type

 

posted on 2018-05-23 11:47  一只火眼金睛的男猴  阅读(977)  评论(0编辑  收藏  举报