图论中的拓扑排序
在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:
-
每个顶点出现且只出现一次。
-
若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。
有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。
例如,下面这个图:
它是一个 DAG 图,那么如何写出它的拓扑排序呢?这里说一种比较常用的方法:
-
从 DAG 图中选择一个 没有前驱(即入度为0)的顶点并输出。
-
从图中删除该顶点和所有以它为起点的有向边。
-
重复 1 和 2 直到当前的 DAG 图为空或当前图中不存在无前驱的顶点为止。后一种情况说明有向图中必然存在环。
于是,得到拓扑排序后的结果是 { 1, 2, 4, 3, 5 }。
通常,一个有向无环图可以有一个或多个拓扑排序序列。
应用场景
拓扑排序通常用来“排序”具有依赖关系的任务。
比如,如果用一个DAG图来表示一个工程,其中每个顶点表示工程中的一个任务,用有向边 表示在做任务 B 之前必须先完成任务 A。故在这个工程中,任意两个任务要么具有确定的先后关系,要么是没有关系,绝对不存在互相矛盾的关系(即环路)。
#include<iostream> #include <list> #include <queue> usingnamespacestd; /************************类声明************************/ class Graph { int V; // 顶点个数 list<int> *adj; // 邻接表 queue<int> q; // 维护一个入度为0的顶点的集合 int* indegree; // 记录每个顶点的入度 public: Graph(int V); // 构造函数 ~Graph(); // 析构函数 void addEdge(int v, int w); // 添加边 bool topological_sort(); // 拓扑排序 }; /************************类定义************************/ Graph::Graph(int V) { this->V = V; adj = newlist<int>[V]; indegree = newint[V]; // 入度全部初始化为0 for(int i=0; i<V; ++i) indegree[i] = 0; } Graph::~Graph() { delete [] adj; delete [] indegree; } void Graph::addEdge(int v, int w) { adj[v].push_back(w); ++indegree[w]; } bool Graph::topological_sort() { for(int i=0; i<V; ++i) if(indegree[i] == 0) q.push(i); // 将所有入度为0的顶点入队 int count = 0; // 计数,记录当前已经输出的顶点数 while(!q.empty()) { int v = q.front(); // 从队列中取出一个顶点 q.pop(); cout << v << " "; // 输出该顶点 ++count; // 将所有v指向的顶点的入度减1,并将入度减为0的顶点入栈 list<int>::iterator beg = adj[v].begin(); for( ; beg!=adj[v].end(); ++beg) if(!(--indegree[*beg])) q.push(*beg); // 若入度为0,则入栈 } if(count < V) returnfalse; // 没有输出全部顶点,有向图中有回路 else returntrue; // 拓扑排序成功 }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)