Python编程实验一 决策树实现结果预测
题目:给定如下训练集和测试集,参考《机器学习》(Tom Mitchell)第三章和《机器学习》(周志华)第四章,先阅读ID3、C4.5和CART算法并且仔细阅读附件给出的ID3、C4.5算法python程序,再实现基于基尼指数(Gini index)选择最优划分属性(特征)构造的CART决策树的 python程序。最终提交一份实验报告, 提交的实验报告给出python实现的完整程序和实验结果。
训练集:
outlook temperature humidity windy
---------------------------------------------------------
sunny hot high false N
sunny hot high true N
overcast hot high false Y
rain mild high false Y
rain cool normal false Y
rain cool normal true N
overcast cool normal true Y
测试集
outlook temperature humidity windy
---------------------------------------------------------
sunny mild high false
sunny cool normal false
rain mild normal false
sunny mild normal true
overcast mild high true
overcast hot normal false
true rain mild high
Python程序
1、CART.py
# -*- coding: utf-8 -*-
## 参考《机器学习》(Tom M. Mitchell) 第三章 决策树学习
## 《机器学习》(周志华), 第四章 决策树
1 from math import log 2 import operator 3 import treePlotter 4 5 def calcGiniIndex(dataSet): 6 """ 7 输入:数据集 8 输出:数据集的基尼指数 9 描述:计算给定数据集的基尼指数 10 """ 11 numEntries = len(dataSet) # 返回数据集的行数 12 labelCounts = {} # 保存每个标签(Label)出现次数的字典 13 for featVec in dataSet: # 对每组特征向量进行统计 14 currentLabel = featVec[-1] # 提取标签信息 15 if currentLabel not in labelCounts.keys(): # 如果标签没有放入统计次数的字典,添加进去 16 labelCounts[currentLabel] = 0 17 labelCounts[currentLabel] += 1 # Label计数 18 giniIndexEnt = 0.0 # 基尼指数 19 for key in labelCounts: # 计算基尼指数 20 prob = float(labelCounts[key])/numEntries # 选择该标签(Label)的概率 21 giniIndexEnt += prob * (1.0 - prob) # 利用公式计算 22 return giniIndexEnt # 返回基尼指数 23 24 def splitDataSet(dataSet, axis, value): # 待划分数据集合,特征下标,特征值 25 """ 26 输入:数据集,选择维度,选择值 27 输出:划分数据集 28 描述:按照给定特征划分数据集;去除选择维度中等于选择值的项 29 """ 30 retDataSet = [] # 保存划分的数据子集 31 for featVec in dataSet: # 遍历数据集中的每个样本 32 if featVec[axis] == value: #如果特征值符合要求,则添加到子集中 33 reduceFeatVec = featVec[:axis] # 保存第0到第axis-1个特征 34 reduceFeatVec.extend(featVec[axis+1:]) # 保存第axis+1到最后一个特征 35 retDataSet.append(reduceFeatVec) # 添加符合要求的样本到划分子集中 36 return retDataSet # 返回划分好的(特征axis的值=value)的子集 37 38 def chooseBestFeatureToSplit(dataSet): 39 """ 40 输入:数据集 41 输出:最好的划分维度 42 描述:选择最好的数据集划分维度 43 """ 44 numFeatures = len(dataSet[0]) - 1 # 特征数量 45 bestInfoGini = calcGiniIndex(dataSet) # 计算数据集的基尼指数 46 bestFeature = -1 # 最优特征索引值 47 for i in range(numFeatures): # 遍历所有特征 48 featList = [example[i] for example in dataSet] # 获取dataSet的第i个所有特征-第i列全部特征 49 uniqueVals = set(featList) # 创建set集合{}元素不可重复 50 newGini = 0.0 51 for value in uniqueVals: # 计算新的基尼指数 52 subDataSet = splitDataSet(dataSet, i, value) # subDataSet划分后的子集 53 prob = len(subDataSet)/float(len(dataSet)) # 计算子集概率 54 newGini += prob * calcGiniIndex(subDataSet) # 新的基尼指数 55 if (newGini < bestInfoGini): 56 bestInfoGini = newGini 57 bestFeature = i 58 return bestFeature # 返回基尼指数最小的特征索引值 59 60 def majorityCnt(classList): 61 """ 62 输入:分类类别列表 63 输出:子节点的分类 64 描述:数据集已经处理了所有属性,但是类标签依然不是唯一的, 65 采用多数判决的方法决定该子节点的分类 66 """ 67 classCount = {} 68 for vote in classList: # 统计classList中每个元素出现的次数 69 if vote not in classCount.keys(): 70 classCount[vote] = 0 71 classCount[vote] += 1 72 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reversed=True) # 根据字典的值降序排序 73 return sortedClassCount[0][0] # 返回classList中出现次数最多的元素 74 75 def createTree(dataSet, labels): 76 """ 77 输入:数据集,特征标签 78 输出:决策树 79 描述:递归构建决策树,利用上述的函数 80 """ 81 classList = [example[-1] for example in dataSet] 82 if classList.count(classList[0]) == len(classList): 83 # 类别完全相同,停止划分 84 return classList[0] 85 if len(dataSet[0]) == 1: 86 # 遍历完所有特征时返回出现次数最多的 87 return majorityCnt(classList) 88 bestFeat = chooseBestFeatureToSplit(dataSet) 89 bestFeatLabel = labels[bestFeat] 90 myTree = {bestFeatLabel:{}} 91 del(labels[bestFeat]) 92 # 得到列表包括节点所有的属性值 93 featValues = [example[bestFeat] for example in dataSet] 94 uniqueVals = set(featValues) 95 for value in uniqueVals: 96 subLabels = labels[:] 97 myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) 98 return myTree 99 100 def classify(inputTree, featLabels, testVec): 101 """ 102 输入:决策树,分类标签,测试数据 103 输出:决策结果 104 描述:跑决策树 105 """ 106 firstStr = list(inputTree.keys())[0] 107 secondDict = inputTree[firstStr] 108 featIndex = featLabels.index(firstStr) 109 for key in secondDict.keys(): 110 if testVec[featIndex] == key: 111 if type(secondDict[key]).__name__ == 'dict': 112 classLabel = classify(secondDict[key], featLabels, testVec) 113 else: 114 classLabel = secondDict[key] 115 return classLabel 116 117 def classifyAll(inputTree, featLabels, testDataSet): 118 """ 119 输入:决策树,分类标签,测试数据集 120 输出:决策结果 121 描述:跑决策树 122 """ 123 classLabelAll = [] 124 for testVec in testDataSet: 125 classLabelAll.append(classify(inputTree, featLabels, testVec)) 126 return classLabelAll 127 128 def storeTree(inputTree, filename): 129 """ 130 输入:决策树,保存文件路径 131 输出: 132 描述:保存决策树到文件 133 """ 134 import pickle 135 fw = open(filename, 'wb') 136 pickle.dump(inputTree, fw) 137 fw.close() 138 139 def grabTree(filename): 140 """ 141 输入:文件路径名 142 输出:决策树 143 描述:从文件读取决策树 144 """ 145 import pickle 146 fr = open(filename, 'rb') 147 return pickle.load(fr) 148 149 def createDataSet(): 150 """ 151 outlook-> 0: sunny | 1: overcast | 2: rain 152 temperature-> 0: hot | 1: mild | 2: cool 153 humidity-> 0: high | 1: normal 154 windy-> 0: false | 1: true 155 """ 156 dataSet = [[0, 0, 0, 0, 'N'], 157 [0, 0, 0, 1, 'N'], 158 [1, 0, 0, 0, 'Y'], 159 [2, 1, 0, 0, 'Y'], 160 [2, 2, 1, 0, 'Y'], 161 [2, 2, 1, 1, 'N'], 162 [1, 2, 1, 1, 'Y']] 163 labels = ['outlook', 'temperature', 'humidity', 'windy'] 164 return dataSet, labels 165 166 def createTestSet(): 167 """ 168 outlook-> 0: sunny | 1: overcast | 2: rain 169 temperature-> 0: hot | 1: mild | 2: cool 170 humidity-> 0: high | 1: normal 171 windy-> 0: false | 1: true 172 """ 173 testSet = [[0, 1, 0, 0], 174 [0, 2, 1, 0], 175 [2, 1, 1, 0], 176 [0, 1, 1, 1], 177 [1, 1, 0, 1], 178 [1, 0, 1, 0], 179 [2, 1, 0, 1]] 180 return testSet 181 182 def main(): 183 dataSet, labels = createDataSet() 184 labels_tmp = labels[:] # 拷贝,createTree会改变labels 185 desicionTree = createTree(dataSet, labels_tmp) 186 #storeTree(desicionTree, 'classifierStorage.txt') 187 #desicionTree = grabTree('classifierStorage.txt') 188 print('desicionTree:\n', desicionTree) 189 treePlotter.createPlot(desicionTree) 190 testSet = createTestSet() 191 print('classifyResult:\n', classifyAll(desicionTree, labels, testSet)) 192 193 if __name__ == '__main__': 194 main() 195 196 2、treePlotter.py 197 import matplotlib.pyplot as plt 198 199 decisionNode = dict(boxstyle="sawtooth", fc="0.8") 200 leafNode = dict(boxstyle="round4", fc="0.8") 201 arrow_args = dict(arrowstyle="<-") 202 203 def plotNode(nodeTxt, centerPt, parentPt, nodeType): 204 """ 205 输入: 206 输出: 207 描述:绘制一个点 208 """ 209 createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', \ 210 xytext=centerPt, textcoords='axes fraction', \ 211 va="center", ha="center", bbox=nodeType, arrowprops=arrow_args) 212 213 def getNumLeafs(myTree): 214 """ 215 输入:决策树 216 输出:决策树的叶子数量 217 描述: 218 """ 219 numLeafs = 0 220 firstStr = list(myTree.keys())[0] 221 secondDict = myTree[firstStr] 222 for key in secondDict.keys(): 223 if type(secondDict[key]).__name__ == 'dict': 224 numLeafs += getNumLeafs(secondDict[key]) 225 else: 226 numLeafs += 1 227 return numLeafs 228 229 def getTreeDepth(myTree): 230 """ 231 输入:决策树 232 输出:树的深度 233 描述: 234 """ 235 maxDepth = 0 236 firstStr = list(myTree.keys())[0] 237 secondDict = myTree[firstStr] 238 for key in secondDict.keys(): 239 if type(secondDict[key]).__name__ == 'dict': 240 thisDepth = getTreeDepth(secondDict[key]) + 1 241 else: 242 thisDepth = 1 243 if thisDepth > maxDepth: 244 maxDepth = thisDepth 245 return maxDepth 246 247 def plotMidText(cntrPt, parentPt, txtString): 248 """ 249 输入: 250 输出: 251 描述: 252 """ 253 xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0] 254 yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1] 255 createPlot.ax1.text(xMid, yMid, txtString) 256 257 def plotTree(myTree, parentPt, nodeTxt): 258 """ 259 输入: 260 输出: 261 描述: 262 """ 263 numLeafs = getNumLeafs(myTree) 264 depth = getTreeDepth(myTree) 265 firstStr = list(myTree.keys())[0] 266 cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalw, plotTree.yOff) 267 plotMidText(cntrPt, parentPt, nodeTxt) 268 plotNode(firstStr, cntrPt, parentPt, decisionNode) 269 secondDict = myTree[firstStr] 270 plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD 271 for key in secondDict.keys(): 272 if type(secondDict[key]).__name__ == 'dict': 273 plotTree(secondDict[key], cntrPt, str(key)) 274 else: 275 plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalw 276 plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode) 277 plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key)) 278 plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD 279 280 def createPlot(inTree): 281 """ 282 输入:决策树 283 输出: 284 描述:绘制整个决策树 285 """ 286 fig = plt.figure(1, facecolor='white') 287 fig.clf() 288 axprops = dict(xticks=[], yticks=[]) 289 createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) 290 plotTree.totalw = float(getNumLeafs(inTree)) 291 plotTree.totalD = float(getTreeDepth(inTree)) 292 plotTree.xOff = -0.5 / plotTree.totalw 293 plotTree.yOff = 1.0 294 plotTree(inTree, (0.5, 1.0), '') 295 plt.show()
运行结果:
desicionTree:
{'outlook': {0: 'N', 1: 'Y', 2: {'windy': {0: 'Y', 1: 'N'}}}}
classifyResult:
['N', 'N', 'Y', 'N', 'Y', 'Y', 'N']
Process finished with exit code 0
画出的决策树图形: