一道微分方程题

Problem

\(\frac{3y^2+1}{y^3+y}\cdot \frac{\text{d}y}{\text{d}x}=2x,~y(0)=1\),求 \(y=4\)\(x\) 的值。

Solution

1

\[\int \frac{3y^2+1}{y^3+y}~\text{d}y=x^2+C \]

2

\[\begin{align} \int \frac{3y^2+1}{y^3+y}~\text{d}y & = \int \frac{3y^2+3-2}{y(y^2+1)}~\text{d}y\nonumber\\ & = \int \frac{3}{y}~\text{d}y-\int \frac{2}{y(y^2+1)}~\text{d}y\nonumber\\ & = 3\ln |y|-\int \frac{2}{y(y^2+1)}~\text{d}y\nonumber \end{align} \]

3

简化 \(\int \frac{2}{y(y^2+1)}~\text{d}y\)

\[\nonumber \begin{align} \frac{A}{y}+\frac{By+C}{y^2+1}=\frac{2}{y(y^2+1)}\nonumber\\ Ay^2+A+By^2+Cy=2\nonumber \end{align} \]

\(A+B=0,~C=0,~A=2\),即 \(A=2,~B=-2,~C=0\)

\[\begin{align} \int \frac{2}{y(y^2+1)}~\text{d}y&=\int\frac{2}{y}~\text{d}y-\int\frac{2y}{y^2+1}~\text{d}y\nonumber\\ &=2\ln |y|-\int\frac{2y}{y^2+1}~\text{d}y\nonumber \end{align} \]

3.1

简化 \(\int\frac{2y}{y^2+1}~\text{d}y\)

\(u=y^2+1\),则 \(\text{d}u=2y\),即 \(\int\frac{2y}{y^2+1}~\text{d}y=\int \frac{1}{u}~\text{d}u=\ln u=\ln (y^2+1)\)

4

综合以上各式,得 \(3\ln |y|-2\ln |y|+\ln(y^2+1)=x^2+C\)
代入 \(x=0,~y=1\)\(C=\ln 2\)
代入 \(y=4\)\(x=\sqrt{\ln 4+\ln 17-\ln 2}=\sqrt{\ln \frac{4\cdot 17}{2}}=\sqrt{\ln{34}}\)

Graph

img

posted @ 2020-02-24 15:25  酷暑一夏1  阅读(190)  评论(0编辑  收藏  举报