HDU5943 Kingdom of Obsession 题解
题意
有 \(n\) 个数 \(s+1\ldots s+n\),求是否能将这 \(n\) 个数放到 \(1\ldots n\) 上,且当令原数为 \(x\),放到 \(y\) 位置时有 \(x \mod y=0\)。
不超过 \(100\) 组数据,\(1\le n \le 10^9,0\le s\le 10^9\)。
题解
看上去很吓人的数据范围,也是一个让你以为这是结论题的数据范围。
但是仔细观察可以发现,当 \(s+1\ldots s+n\) 中有 \(2\) 个及以上质数时,只有将他们安排到 \(1\) 位置或者质数自身位置才有 \(x\mod y=0\)。
首先尝试将这两个质数安排到其自身的位置,这要求 \([s+1,s+n]\cap [1,n]\neq \varnothing\),即要求 \(s<n\)。
那么此时 \([s+1,n]\) 就能够安排到自己的位置了,那么就只剩下 \([n+1,s+n]\) 和 \([1,s]\) 了,可以发现这就是 \(s\) 和 \(n\) 交换后的结果。
但是,当 \(s\) 与 \(n\) 交换后,或者 \(s\) 与 \(n\) 不能交换时,存在 \(2\) 个或以上质数,那么显然无解了。另外,根据结论,在 \([2,10^9]\) 范围内,大约 \(300\) 个数就会出现一次质数,这里保险起见设 \(1000\) 个数出现一次质数。
这里又有一个很神奇的问题,ans+=can[i]
前面不能加 if(!match[i])
,具体原因未知。
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
const int MAXN=2000+5;
int n,s,match[MAXN],ver,vis[MAXN];
bool can(int x)
{
vis[x]=ver;
for(int i=1;i<=n;i++)
if((s+x)%i==0 && (!match[i]||(vis[match[i]]!=ver&&can(match[i]))))
{
match[i]=x;
return 1;
}
return 0;
}
int main()
{
int T;
scanf("%d",&T);
for(int t=1;t<=T;t++)
{
memset(vis,0,sizeof(vis));
memset(match,0,sizeof(match));
scanf("%d %d",&n,&s);
if(s<n) std::swap(n,s);
if(n>1000)
{
printf("Case #%d: No\n",t);
continue;
}
int ans=0;
for(int i=1;i<=n;i++)
{
ver=i;
ans+=can(i);
}
printf("Case #%d: %s\n",t,ans==n?"Yes":"No");
}
return 0;
}
无特别声明的情况下,本文为原创文章,允许转载,采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。
在声明禁止转载的情况下,请勿转载;若本文章为转载的文章,版权归原作者所有。
如果您觉得本文写得好,请点击下方的推荐按钮~若您有任何建议和指正,请在下方留言,对于您的指正将不胜感激。
在声明禁止转载的情况下,请勿转载;若本文章为转载的文章,版权归原作者所有。
如果您觉得本文写得好,请点击下方的推荐按钮~若您有任何建议和指正,请在下方留言,对于您的指正将不胜感激。