统计学习方法五 逻辑回归分类

逻辑回归分类

1,概念

  

2,算法流程

  

    

3,多分类逻辑回归

  

4,逻辑回归总结 

优点:

1)预测结果是界于0和1之间的概率;

2)可以适用于连续性和类别性自变量;

3)容易使用和解释;

缺点:

1)对模型中自变量多重共线性较为敏感,例如两个高度相关自变量同时放入模型,可能导致较弱的一个自变量回归符号不符合预期,符号被扭转。​需要利用因子分析或者变量聚类分析等手段来选择代表性的自变量,以减少候选变量之间的相关性;

2)预测结果呈“S”型,因此从log(odds)向概率转化的过程是非线性的,在两端随着​log(odds)值的变化,概率变化很小,边际值太小,slope太小,而中间概率的变化很大,很敏感。 导致很多区间的变量变化对目标概率的影响没有区分度,无法确定阀值。

 

posted @ 2017-09-03 16:47  DamonDr  阅读(664)  评论(0编辑  收藏  举报