win10下将spark的程序提交给远程集群中运行
一,开发环境:
操作系统:win19 64位
IDE:IntelliJ IDEA
JDK:1.8
scala:scala-2.10.6
集群:linux上cdh集群,其中spark为1.5.2,hadoop:2.6.0(其实我也想用spark最新版和hadoop的最新版,但1.6以前有spark-assembly-1.x.x-hadoop2.x.x.jar)
二,实现步骤:
1,设置maven的pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>spark</groupId> <artifactId>test</artifactId> <version>1.0-SNAPSHOT</version> <inceptionYear>2008</inceptionYear> <properties> <scala.version>2.10.6</scala.version> </properties> <repositories> <repository> <id>scala-tools.org</id> <name>Scala-Tools Maven2 Repository</name> <url>http://scala-tools.org/repo-releases</url> </repository> </repositories> <pluginRepositories> <pluginRepository> <id>scala-tools.org</id> <name>Scala-Tools Maven2 Repository</name> <url>http://scala-tools.org/repo-releases</url> </pluginRepository> </pluginRepositories> <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.12</version> </dependency> <dependency> <groupId>org.specs</groupId> <artifactId>specs</artifactId> <version>1.2.5</version> <scope>test</scope> </dependency> <dependency> <groupId>commons-logging</groupId> <artifactId>commons-logging</artifactId> <version>1.1.1</version> <type>jar</type> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> <version>3.1</version> </dependency> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.9</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-mllib_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>2.10.6</version> </dependency> </dependencies> <build> <sourceDirectory>src/main/scala</sourceDirectory> <testSourceDirectory>src/test/scala</testSourceDirectory> <plugins> <plugin> <groupId>org.scala-tools</groupId> <artifactId>maven-scala-plugin</artifactId> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> <configuration> <scalaVersion>${scala.version}</scalaVersion> <args> <arg>-target:jvm-1.5</arg> </args> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-eclipse-plugin</artifactId> <configuration> <downloadSources>true</downloadSources> <buildcommands> <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand> </buildcommands> <additionalProjectnatures> <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature> </additionalProjectnatures> <classpathContainers> <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer> <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer> </classpathContainers> </configuration> </plugin> </plugins> </build> <reporting> <plugins> <plugin> <groupId>org.scala-tools</groupId> <artifactId>maven-scala-plugin</artifactId> <configuration> <scalaVersion>${scala.version}</scalaVersion> </configuration> </plugin> </plugins> </reporting> </project>
2,编写简单程序:
object test { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("spark://xxxxx:7077").setAppName("test") val sc = new SparkContext(conf) sc.addJar("E:\\sparkTest\\out\\artifacts\\sparkTest_jar\\sparkTest.jar") val count = sc.parallelize(1 to 4).filter { _ => val x = math.random val y = math.random x*x + y*y < 1 }.count() println(s"Pi is roughly ${4.0 * count / 4}") sc.stop() } }
3,打jar包,即:file->projectStruct->Artifacts->Build->Build Artifacts,点击run运行即可(刚刚试试了下,发现不要jar也能运行,只是控制台还没结果输出?)
4,pom.xml的spark版本号要和集群中spark的版本号一致(不一致出现:exception1:java.lang.IllegalArgumentException: requirement failed: Can only call getServletHandlers on a running MetricsSystem)
5,异常: Could not locate executable null\bin\winutils.exe in the Hadoop binaries
解决方法:
1,下载hadoop的包,我下了hadoop-2.7.3,解压,并配置HADOOP_HOME即可
2,下载https://github.com/srccodes/hadoop-common-2.2.0-bin下载winutils.exe,放到hadoop目录下的bin中
3,重启idea异常消失
6, Exception while deleting Spark temp dir: C:\U
sers\tend\AppData\Local\Temp\spark-70484fc4-167d-48fa-a8f6-54db9752402e\userFiles-27a65cc7
-817f-4476-a2a2-58967d7b6cc1 解决方法:目前spark在windows系统下存在这个问题。不想看的话,就把log4j.properties中log的level设置为FATAL吧(呵呵呵)
7,com.google.protobuf.InvalidProtocolBufferException: Protocol message end-gro:hdfs的ip地址或端口号输入有问题,
hdfs://xxxx:8020//usr/xxx (新版本端口多为9000)
8,oracle读写操作:
package spark import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.hive.HiveContext
object readFromOracle {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.FATAL)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
val conf=new SparkConf().setMaster("spark://xxxxxx:7077").setAppName("read")
.setJars(List("E:\\softs\\softDownload\\ojdbc14.jar"))//添加ojdbc14的jar包,会出现
val sc=new SparkContext(conf)
val oracleDriverUrl="jdbc:oracle:thin:@xxxxxxxx:1521:testdb11g"
val jdbcMap=Map("url" -> oracleDriverUrl,"user"->"xxxxx","password"->"xxxxx","dbtable"->"MYTABLE","driver"->"oracle.jdbc.driver.OracleDriver")
val sqlContext = new HiveContext(sc)
val jdbcDF = sqlContext.read.options(jdbcMap).format("jdbc").load
jdbcDF.show(3)
}
}
package spark
import java.sql.{Connection, DriverManager, PreparedStatement}
import java.util.Properties
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.jdbc.{JdbcDialect, JdbcDialects, JdbcType}
import org.apache.spark.sql.types._
/**
* Created by Administrator on 2017/7/17.
*/
object writeToOracle {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.FATAL)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
/*
记得设置jar包,虽然build时添加了ojdbc.jar,但仍然出现jdbc:oracle:thin:@xxxxxxxx:testdb11g
at java.sql.DriverManager.getConnection(DriverManager.java:689),看来build时不行
最好将依赖的jar包上传到hdfs上不要在本地
*/
val conf=new SparkConf().setMaster("spark://xxxxxxx:7077").setAppName("write")
.setJars(List("E:\\sparkTest\\out\\artifacts\\writeToOracle_jar\\sparkTest.jar","E:\\softs\\softDownload\\ojdbc14.jar"))
val sc=new SparkContext(conf)
val sqlContext = new HiveContext(sc)
val oracleDriverUrl="jdbc:oracle:thin:@xxxxxxx:testdb11g"
val jdbcMap=Map("url" -> oracleDriverUrl,"user"->"xxxx","password"->"xxxxxx","dbtable"->"MYTABLE","driver"->"oracle.jdbc.driver.OracleDriver")
val jdbcDF = sqlContext.read.options(jdbcMap).format("jdbc").load
jdbcDF.foreachPartition(rows => {
Class.forName("oracle.jdbc.driver.OracleDriver")
val connection: Connection = DriverManager.getConnection(oracleDriverUrl, "xxxx","xxxxxxx")
val prepareStatement: PreparedStatement = connection.prepareStatement("insert into MYTABLE2 values(?,?,?,?,?,?,?,?,?)")
rows.foreach(row => {
prepareStatement.setString(1, row.getString(0))
prepareStatement.setString(2, row.getString(0))
prepareStatement.setString(3, row.getString(0))
prepareStatement.setString(4, row.getString(0))
prepareStatement.setString(5, row.getString(0))
prepareStatement.setString(6, row.getString(0))
prepareStatement.setString(7, row.getString(0))
prepareStatement.setString(8, row.getString(0))
prepareStatement.setString(9,row.getString(0))
prepareStatement.addBatch()
})
prepareStatement.executeBatch()
prepareStatement.close()
connection.close()
})
}
}
复制数据库,操作:
package spark.sql import java.util.Properties import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.hive.HiveContext import org.apache.spark.sql.jdbc.{JdbcDialect, JdbcDialects, JdbcType} import org.apache.spark.sql.types._ /** * Created by Administrator on 2017/7/21. */ object OperateOracle { Logger.getLogger("org.apache.spark").setLevel(Level.WARN) Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF) val oracleDriverUrl="jdbc:oracle:thin:@xxxxxxx:1521:testdb11g" val jdbcMap=Map("url" -> oracleDriverUrl, "user"->"xxxxxx","password"->"xxxxxxx", "dbtable"->"MYTABLE", "driver"->"oracle.jdbc.driver.OracleDriver") def main(args: Array[String]) { //创建SparkContext val sc = createSparkContext //创建sqlContext用来连接oracle、Hive等 val sqlContext = new HiveContext(sc) //加载oracle表数据,为lazy方式 val jdbcDF = sqlContext.read.options(jdbcMap).format("jdbc").load jdbcDF.registerTempTable("MYTABLEDF") val df2Oracle = sqlContext.sql("select * from MYTABLEDF") //Registering the OracleDialect JdbcDialects.registerDialect(OracleDialect) val connectProperties = new Properties() connectProperties.put("user", "xxxxxx") connectProperties.put("password", "xxxxxxx") Class.forName("oracle.jdbc.driver.OracleDriver").newInstance() //write back Oracle //Note: When writing the results back orale, be sure that the target table existing JdbcUtils.saveTable(df2Oracle, oracleDriverUrl, "MYTABLE2", connectProperties) sc.stop } def createSparkContext: SparkContext = { val conf = new SparkConf().setAppName("Operate") .setMaster("spark://xxxxxx:7077") .setJars(List("hdfs://xxxxx:8020//user//ojdbc14.jar")) //SparkConf parameters setting //conf.set("spark.sql.autoBroadcastJoinThreshold", "50M") /*spark.sql.codegen 是否预编译sql成java字节码,长时间或频繁的sql有优化效果*/ //conf.set("spark.sql.codegen", "true") /*spark.sql.inMemoryColumnarStorage.batchSize 一次处理的row数量,小心oom*/ //conf.set("spark.sql.inMemoryColumnarStorage.batchSize", "1000") /*spark.sql.inMemoryColumnarStorage.compressed 设置内存中的列存储是否需要压缩*/ //conf.set("spark.sql.inMemoryColumnarStorage.compressed", "true") val sc = new SparkContext(conf) sc } //overwrite JdbcDialect fitting for Oracle val OracleDialect = new JdbcDialect { override def canHandle(url: String): Boolean = url.startsWith("jdbc:oracle") || url.contains("oracle") //getJDBCType is used when writing to a JDBC table override def getJDBCType(dt: DataType): Option[JdbcType] = dt match { case StringType => Some(JdbcType("VARCHAR2(255)", java.sql.Types.VARCHAR)) case BooleanType => Some(JdbcType("NUMBER(1)", java.sql.Types.NUMERIC)) case IntegerType => Some(JdbcType("NUMBER(16)", java.sql.Types.NUMERIC)) case LongType => Some(JdbcType("NUMBER(16)", java.sql.Types.NUMERIC)) case DoubleType => Some(JdbcType("NUMBER(16,4)", java.sql.Types.NUMERIC)) case FloatType => Some(JdbcType("NUMBER(16,4)", java.sql.Types.NUMERIC)) case ShortType => Some(JdbcType("NUMBER(5)", java.sql.Types.NUMERIC)) case ByteType => Some(JdbcType("NUMBER(3)", java.sql.Types.NUMERIC)) case BinaryType => Some(JdbcType("BLOB", java.sql.Types.BLOB)) case TimestampType => Some(JdbcType("DATE", java.sql.Types.DATE)) case DateType => Some(JdbcType("DATE", java.sql.Types.DATE)) // case DecimalType.Fixed(precision, scale) => Some(JdbcType("NUMBER(" + precision + "," + scale + ")", java.sql.Types.NUMERIC)) case DecimalType.Unlimited => Some(JdbcType("NUMBER(38,4)", java.sql.Types.NUMERIC)) case _ => None } } }
此时的pom.xml:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>spark</groupId> <artifactId>test</artifactId> <version>1.0-SNAPSHOT</version> <inceptionYear>2008</inceptionYear> <properties> <scala.version>2.10.6</scala.version> </properties> <repositories> <repository> <id>scala-tools.org</id> <name>Scala-Tools Maven2 Repository</name> <url>http://scala-tools.org/repo-releases</url> </repository> </repositories> <pluginRepositories> <pluginRepository> <id>scala-tools.org</id> <name>Scala-Tools Maven2 Repository</name> <url>http://scala-tools.org/repo-releases</url> </pluginRepository> </pluginRepositories> <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.12</version> </dependency> <dependency> <groupId>org.specs</groupId> <artifactId>specs</artifactId> <version>1.2.5</version> <scope>test</scope> </dependency> <dependency> <groupId>commons-logging</groupId> <artifactId>commons-logging</artifactId> <version>1.1.1</version> <type>jar</type> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> <version>3.1</version> </dependency> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.9</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-mllib_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>com.databricks</groupId> <artifactId>spark-csv_2.10</artifactId> <version>1.5.0</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>2.10.6</version> </dependency> </dependencies> <build> <sourceDirectory>src/main/scala</sourceDirectory> <testSourceDirectory>src/test/scala</testSourceDirectory> <plugins> <plugin> <groupId>org.scala-tools</groupId> <artifactId>maven-scala-plugin</artifactId> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> <configuration> <scalaVersion>${scala.version}</scalaVersion> <args> <arg>-target:jvm-1.5</arg> </args> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-eclipse-plugin</artifactId> <configuration> <downloadSources>true</downloadSources> <buildcommands> <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand> </buildcommands> <additionalProjectnatures> <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature> </additionalProjectnatures> <classpathContainers> <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer> <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer> </classpathContainers> </configuration> </plugin> </plugins> </build> <reporting> <plugins> <plugin> <groupId>org.scala-tools</groupId> <artifactId>maven-scala-plugin</artifactId> <configuration> <scalaVersion>${scala.version}</scalaVersion> </configuration> </plugin> </plugins> </reporting> </project>