统计学习方法 三 kNN
KNN
(一)KNN概念:
K近邻算法是一种回归和分类算法,这主要讨论其分类概念:
K近邻模型三要素:
1,距离:
2,K值的选择:
K值选择过小:模型过复杂,近似误差减小,估计误差上升,出现过拟合
K值选择过大:模型过于简单,预测能力弱
K值的选择:可以通过交叉验证来确定,k一般取一个较小的值
3,分类决策规则:
(二),kd树
1,构造kd树
2,kd树最近邻搜索策略
一个复杂点了例子如查找点为(2,4.5)。
1、同样先进行二叉查找,先从(7,2)查找到(5,4)节点,在进行查找时是由y = 4为分割超平面的,由于查找点为y值为4.5,因此进入右子空间查找到(4,7),形成搜索路径<(7,2),(5,4),(4,7)>,
2、取(4,7)为当前最近邻点,计算其与目标查找点的距离为3.202。然后回溯到(5,4),计算其与查找点之间的距离为3.041。
((4,7)与目标查找点的距离为3.202,而(5,4)与查找点之间的距离为3.041,所以(5,4)为查询点的最近点;)
3、以(2,4.5)为圆心,以3.041为半径作圆,如图4所示。可见该圆和y = 4超平面交割,所以需要进入(5,4)左子空间进行查找。此时需将(2,3)节点加入搜索路径中得<(7,2),(2,3)>。
4、回溯至(2,3)叶子节点,(2,3)距离(2,4.5)比(5,4)要近,所以最近邻点更新为(2,3),最近距离更新为1.5。
5、回溯至(7,2),以(2,4.5)为圆心1.5为半径作圆,并不和x = 7分割超平面交割,如图5所示。
至此,搜索路径回溯完。返回最近邻点(2,3),最近距离1.5。
(三)总结:
个人体会:knn:输入训练数据,通过训练数据构建一个kd树,测试时,将数据插入kd树中,然后根据指定的距离测试方法选择最近的K个值,再根据决策规则选择测试数据所属的分类(关键是构建kd树(选中位数原则)和kd树查找),感觉适合特征是连续的数据
参考网址:
http://blog.csdn.net/losteng/article/details/50893739