SparkMLlib分类算法之支持向量机

SparkMLlib分类算法之支持向量机

(一),概念

  支持向量机(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。参考网址:http://www.cnblogs.com/end/p/3848740.html

(二),SparkMLlib中SVM回归应用

1,数据集:参考这篇SparkMLlib学习分类算法之逻辑回归算法

2,处理数据及获取训练集和测试集

val orig_file=sc.textFile("train_nohead.tsv")
    //println(orig_file.first())
    val data_file=orig_file.map(_.split("\t")).map{
      r =>
        val trimmed =r.map(_.replace("\"",""))
        val lable=trimmed(r.length-1).toDouble
        val feature=trimmed.slice(4,r.length-1).map(d => if(d=="?")0.0
        else d.toDouble)
        LabeledPoint(lable,Vectors.dense(feature))
    }
   /*特征标准化优化*/
    val vectors=data_file.map(x =>x.features)
    val rows=new RowMatrix(vectors)
    println(rows.computeColumnSummaryStatistics().variance)//每列的方差
    val scaler=new StandardScaler(withMean=true,withStd=true).fit(vectors)//标准化
    val scaled_data=data_file.map(point => LabeledPoint(point.label,scaler.transform(point.features)))
        .randomSplit(Array(0.7,0.3),11L)
    val data_train=scaled_data(0)
    val data_test=scaled_data(1)

2,建立支持向量机模型及模型评估

 /*训练 SVM 模型**/
    val model_Svm=SVMWithSGD.train(data_train,numIteration)
val correct_svm=data_test.map{
      point => if(model_Svm.predict(point.features)==point.label)
        1 else 0
    }.sum()/data_test.count()//精确度:0.6060885608856088
val metrics=Seq(model_Svm).map{
      model =>
        val socreAndLabels=data_test.map {
          point => (model.predict(point.features), point.label)
        }
        val metrics=new BinaryClassificationMetrics(socreAndLabels)
        (model.getClass.getSimpleName,metrics.areaUnderPR(),metrics.areaUnderROC())
    }
val allMetrics = metrics 
    allMetrics.foreach{ case (m, pr, roc) =>
      println(f"$m, Area under PR: ${pr * 100.0}%2.4f%%, Area under ROC: ${roc * 100.0}%2.4f%%")
    }
/*
SVMModel, Area under PR: 72.5527%, Area under ROC: 60.4180%*/

3,模型参数调优

   逻辑回归(SGD)和 SVM 模型有相同的参数,原因是它们都使用随机梯度下降( SGD )作为基础优化技术。不同点在于二者采用的损失函数不同

3.1 定义调参函数及模型评估函数

/*调参函数*/
    def trainWithParams(input: RDD[LabeledPoint], regParam: Double,
                        numIterations: Int, updater: Updater, stepSize: Double) = {
      val svm = new SVMWithSGD
      svm.optimizer.setNumIterations(numIterations).
        setUpdater(updater).setRegParam(regParam).setStepSize(stepSize)
      svm.run(input)
    }
    /*评估函数*/
    def createMetrics(label: String, data: RDD[LabeledPoint], model:
    ClassificationModel) = {
      val scoreAndLabels = data.map { point =>
        (model.predict(point.features), point.label)
      }
      val metrics = new BinaryClassificationMetrics(scoreAndLabels)
      (label, metrics.areaUnderROC)
    }

3.2  改变迭代次数(发现一旦完成特定次数的迭代,再增大迭代次数对结果的影响较小)

val iterResults = Seq(1, 5, 10, 50).map { param =>
      val model = trainWithParams(data_train, 0.0, param, new
          SimpleUpdater, 1.0)
      createMetrics(s"$param iterations", data_test, model)
    }
    iterResults.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }
/*
1 iterations, AUC = 59.02%
5 iterations, AUC = 60.04%
10 iterations, AUC = 60.42%
50 iterations, AUC = 60.42%
*/

3.3 ,改变步长(以看出步长增长过大对性能有负面影响)

    在 SGD 中,在训练每个样本并更新模型的权重向量时,步长用来控制算法在最陡的梯度方向上应该前进多远。较大的步长收敛较快,但是步长太大可能导致收敛到局部最优解。

val stepResults = Seq(0.001, 0.01, 0.1, 1.0, 10.0).map { param =>
      val model = trainWithParams(data_train, 0.0, numIteration, new
          SimpleUpdater, param)
      createMetrics(s"$param step size", data_test, model)
    }
    stepResults.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }
/*
0.001 step size, AUC = 59.02%
0.01 step size, AUC = 59.02%
0.1 step size, AUC = 59.01%
1.0 step size, AUC = 60.42%
10.0 step size, AUC = 56.09%

*/

3.4 正则化 

val regResults = Seq(0.001, 0.01, 0.1, 1.0, 10.0).map { param =>
      val model = trainWithParams(data_train, param, numIteration,
        new SquaredL2Updater, 1.0)
      createMetrics(s"$param L2 regularization parameter",
        data_test, model)
    }
    regResults.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }
/*
0.001 L2 regularization parameter, AUC = 60.42%
0.01 L2 regularization parameter, AUC = 60.42%
0.1 L2 regularization parameter, AUC = 60.37%
1.0 L2 regularization parameter, AUC = 60.56%
10.0 L2 regularization parameter, AUC = 41.54%
*/    
    可以看出,低等级的正则化对模型的性能影响不大。然而,增大正则化可以看到欠拟合会导致较低模型性能。
(三),总结
    1,提高精确度感觉蛮难的,前提还是要先分析数据,对不同特征加以处理吧。。。。。
    2,以后多学习。。。。
posted @ 2017-05-20 17:15  DamonDr  阅读(2387)  评论(0编辑  收藏  举报