RxJava学习(三)

变换

所谓变换,就是将事件序列中的对象或整个序列进行加工处理,转换成不同的事件或事件序列。

1) API

首先看一个 map() 的例子:

Observable.just("images/logo.png") // 输入类型 String
    .map(new Func1<String, Bitmap>() {
        @Override
        public Bitmap call(String filePath) { // 参数类型 String
            return getBitmapFromPath(filePath); // 返回类型 Bitmap
        }
    })
    .subscribe(new Action1<Bitmap>() {
        @Override
        public void call(Bitmap bitmap) { // 参数类型 Bitmap
            showBitmap(bitmap);
        }
    });

这里出现了一个叫做 Func1 的类。它和 Action1 非常相似,也是 RxJava 的一个接口,用于包装含有一个参数的方法。 Func1 和 Action的区别在于, Func1 包装的是有返回值的方法。另外,和 ActionX 一样, FuncX 也有多个,用于不同参数个数的方法。FuncX 和ActionX 的区别在 FuncX 包装的是有返回值的方法。

可以看到,map() 方法将参数中的 String 对象转换成一个 Bitmap 对象后返回,而在经过 map() 方法后,事件的参数类型也由 String转为了 Bitmap。这种直接变换对象并返回的,是最常见的也最容易理解的变换。不过 RxJava 的变换远不止这样,它不仅可以针对事件对象,还可以针对整个事件队列,这使得 RxJava 变得非常灵活。我列举几个常用的变换:

  • map(): 事件对象的直接变换,具体功能上面已经介绍过。它是 RxJava 最常用的变换。 map() 的示意图:map() 示意图

  • flatMap(): 这是一个很有用但非常难理解的变换,因此我决定花多些篇幅来介绍它。 首先假设这么一种需求:假设有一个数据结构『学生』,现在需要打印出一组学生的名字。实现方式很简单:

Student[] students = ...;
Subscriber<String> subscriber = new Subscriber<String>() {
    @Override
    public void onNext(String name) {
        Log.d(tag, name);
    }
    ...
};
Observable.from(students)
    .map(new Func1<Student, String>() {
        @Override
        public String call(Student student) {
            return student.getName();
        }
    })
    .subscribe(subscriber);

很简单。那么再假设:如果要打印出每个学生所需要修的所有课程的名称呢?(需求的区别在于,每个学生只有一个名字,但却有多个课程。)首先可以这样实现:

Student[] students = ...;
Subscriber<Student> subscriber = new Subscriber<Student>() {
    @Override
    public void onNext(Student student) {
        List<Course> courses = student.getCourses();
        for (int i = 0; i < courses.size(); i++) {
            Course course = courses.get(i);
            Log.d(tag, course.getName());
        }
    }
    ...
};
Observable.from(students)
    .subscribe(subscriber);

依然很简单。那么如果我不想在 Subscriber 中使用 for 循环,而是希望 Subscriber 中直接传入单个的 Course 对象呢(这对于代码复用很重要)?用 map() 显然是不行的,因为 map() 是一对一的转化,而我现在的要求是一对多的转化。那怎么才能把一个 Student 转化成多个 Course 呢?

这个时候,就需要用 flatMap() 了:

Student[] students = ...;
Subscriber<Course> subscriber = new Subscriber<Course>() {
    @Override
    public void onNext(Course course) {
        Log.d(tag, course.getName());
    }
    ...
};
Observable.from(students)
    .flatMap(new Func1<Student, Observable<Course>>() {
        @Override
        public Observable<Course> call(Student student) {
            return Observable.from(student.getCourses());
        }
    })
    .subscribe(subscriber);

从上面的代码可以看出, flatMap() 和 map() 有一个相同点:它也是把传入的参数转化之后返回另一个对象。但需要注意,和 map()不同的是, flatMap() 中返回的是个 Observable 对象,并且这个 Observable 对象并不是被直接发送到了 Subscriber 的回调方法中。 flatMap() 的原理是这样的:1. 使用传入的事件对象创建一个 Observable 对象;2. 并不发送这个 Observable, 而是将它激活,于是它开始发送事件;3. 每一个创建出来的 Observable 发送的事件,都被汇入同一个 Observable ,而这个 Observable 负责将这些事件统一交给 Subscriber 的回调方法。这三个步骤,把事件拆成了两级,通过一组新创建的 Observable 将初始的对象『铺平』之后通过统一路径分发了下去。而这个『铺平』就是 flatMap() 所谓的 flat。

flatMap() 示意图:

flatMap() 示意图

扩展:由于可以在嵌套的 Observable 中添加异步代码, flatMap() 也常用于嵌套的异步操作,例如嵌套的网络请求。示例代码(Retrofit + RxJava):

networkClient.token() // 返回 Observable<String>,在订阅时请求 token,并在响应后发送 token
    .flatMap(new Func1<String, Observable<Messages>>() {
        @Override
        public Observable<Messages> call(String token) {
            // 返回 Observable<Messages>,在订阅时请求消息列表,并在响应后发送请求到的消息列表
            return networkClient.messages();
        }
    })
    .subscribe(new Action1<Messages>() {
        @Override
        public void call(Messages messages) {
            // 处理显示消息列表
            showMessages(messages);
        }
    });

传统的嵌套请求需要使用嵌套的 Callback 来实现。而通过 flatMap() ,可以把嵌套的请求写在一条链中,从而保持程序逻辑的清晰。

  • throttleFirst(): 在每次事件触发后的一定时间间隔内丢弃新的事件。常用作去抖动过滤,例如按钮的点击监听器:
RxView.clickEvents(button) // RxBinding 代码,后面的文章有解释
    .throttleFirst(500, TimeUnit.MILLISECONDS) // 设置防抖间隔为 500ms
    .subscribe(subscriber);
妈妈再也不怕我的用户手抖点开两个重复的界面啦。

此外, RxJava 还提供很多便捷的方法来实现事件序列的变换,这里就不一一举例了。

2) 变换的原理:lift()

这些变换虽然功能各有不同,但实质上都是针对事件序列的处理和再发送。而在 RxJava 的内部,它们是基于同一个基础的变换方法:lift(Operator)。首先看一下 lift() 的内部实现(仅核心代码):

// 注意:这不是 lift() 的源码,而是将源码中与性能、兼容性、扩展性有关的代码剔除后的核心代码。
// 如果需要看源码,可以去 RxJava 的 GitHub 仓库下载。
public <R> Observable<R> lift(Operator<? extends R, ? super T> operator) {
    return Observable.create(new OnSubscribe<R>() {
        @Override
        public void call(Subscriber subscriber) {
            Subscriber newSubscriber = operator.call(subscriber);
            newSubscriber.onStart();
            onSubscribe.call(newSubscriber);
        }
    });
}

这段代码很有意思:它生成了一个新的 Observable 并返回,而且创建新 Observable 所用的参数 OnSubscribe 的回调方法 call() 中的实现竟然看起来和前面讲过的 Observable.subscribe() 一样!然而它们并不一样哟~不一样的地方关键就在于第二行onSubscribe.call(subscriber) 中的 onSubscribe 所指代的对象不同(高能预警:接下来的几句话可能会导致身体的严重不适)——

  • subscribe() 中这句话的 onSubscribe 指的是 Observable 中的 onSubscribe 对象,这个没有问题,但是 lift() 之后的情况就复杂了点。
  • 当含有 lift() 时: 
    1.lift() 创建了一个 Observable 后,加上之前的原始 Observable,已经有两个 Observable 了; 
    2.而同样地,新 Observable 里的新 OnSubscribe 加上之前的原始 Observable 中的原始 OnSubscribe,也就有了两个OnSubscribe; 
    3.当用户调用经过 lift() 后的 Observable 的 subscribe() 的时候,使用的是 lift() 所返回的新的 Observable ,于是它所触发的 onSubscribe.call(subscriber),也是用的新 Observable 中的新 OnSubscribe,即在 lift() 中生成的那个 OnSubscribe; 
    4.而这个新 OnSubscribe 的 call() 方法中的 onSubscribe ,就是指的原始 Observable 中的原始 OnSubscribe ,在这个 call()方法里,新 OnSubscribe 利用 operator.call(subscriber) 生成了一个新的 SubscriberOperator 就是在这里,通过自己的call() 方法将新 Subscriber 和原始 Subscriber 进行关联,并插入自己的『变换』代码以实现变换),然后利用这个新Subscriber 向原始 Observable 进行订阅。 
    这样就实现了 lift() 过程,有点像一种代理机制,通过事件拦截和处理实现事件序列的变换。

精简掉细节的话,也可以这么说:在 Observable 执行了 lift(Operator) 方法之后,会返回一个新的 Observable,这个新的Observable 会像一个代理一样,负责接收原始的 Observable 发出的事件,并在处理后发送给 Subscriber

如果你更喜欢具象思维,可以看图:

lift() 原理图

或者可以看动图:

lift 原理动图

两次和多次的 lift() 同理,如下图:

两次 lift

举一个具体的 Operator 的实现。下面这是一个将事件中的 Integer 对象转换成 String 的例子,仅供参考:

observable.lift(new Observable.Operator<String, Integer>() {
    @Override
    public Subscriber<? super Integer> call(final Subscriber<? super String> subscriber) {
        // 将事件序列中的 Integer 对象转换为 String 对象
        return new Subscriber<Integer>() {
            @Override
            public void onNext(Integer integer) {
                subscriber.onNext("" + integer);
            }

            @Override
            public void onCompleted() {
                subscriber.onCompleted();
            }

            @Override
            public void onError(Throwable e) {
                subscriber.onError(e);
            }
        };
    }
});

讲述 lift() 的原理只是为了让你更好地了解 RxJava ,从而可以更好地使用它。然而不管你是否理解了 lift() 的原理,RxJava 都不建议开发者自定义 Operator 来直接使用 lift(),而是建议尽量使用已有的 lift() 包装方法(如 map() flatMap() 等)进行组合来实现需求,因为直接使用 lift() 非常容易发生一些难以发现的错误。

3) compose: 对 Observable 整体的变换

除了 lift() 之外, Observable 还有一个变换方法叫做 compose(Transformer)。它和 lift() 的区别在于, lift() 是针对事件项和事件序列的,而 compose() 是针对 Observable 自身进行变换。举个例子,假设在程序中有多个 Observable ,并且他们都需要应用一组相同的 lift() 变换。你可以这么写:

observable1
    .lift1()
    .lift2()
    .lift3()
    .lift4()
    .subscribe(subscriber1);
observable2
    .lift1()
    .lift2()
    .lift3()
    .lift4()
    .subscribe(subscriber2);
observable3
    .lift1()
    .lift2()
    .lift3()
    .lift4()
    .subscribe(subscriber3);
observable4
    .lift1()
    .lift2()
    .lift3()
    .lift4()
    .subscribe(subscriber1);

你觉得这样太不软件工程了,于是你改成了这样:

private Observable liftAll(Observable observable) {
    return observable
        .lift1()
        .lift2()
        .lift3()
        .lift4();
}
...
liftAll(observable1).subscribe(subscriber1);
liftAll(observable2).subscribe(subscriber2);
liftAll(observable3).subscribe(subscriber3);
liftAll(observable4).subscribe(subscriber4);

可读性、可维护性都提高了。可是 Observable 被一个方法包起来,这种方式对于 Observale 的灵活性似乎还是增添了那么点限制。怎么办?这个时候,就应该用 compose() 来解决了:

public class LiftAllTransformer implements Observable.Transformer<Integer, String> {
    @Override
    public Observable<String> call(Observable<Integer> observable) {
        return observable
            .lift1()
            .lift2()
            .lift3()
            .lift4();
    }
}
...
Transformer liftAll = new LiftAllTransformer();
observable1.compose(liftAll).subscribe(subscriber1);
observable2.compose(liftAll).subscribe(subscriber2);
observable3.compose(liftAll).subscribe(subscriber3);
observable4.compose(liftAll).subscribe(subscriber4);

像上面这样,使用 compose() 方法,Observable 可以利用传入的 Transformer 对象的 call 方法直接对自身进行处理,也就不必被包在方法的里面了。

compose() 的原理比较简单。

posted @ 2016-04-10 14:45  Leo的银弹  阅读(259)  评论(0编辑  收藏  举报