Verilog HDL刷题笔记(06)(Circuit-Combinational Logic-Arithmetic Circuit)
66.Create a half adder. A half adder adds two bits (with no carry-in) and produces a sum and carry-out.
module top_module( input a, b, output cout, sum ); assign sum = a^b; assign cout = a&b; endmodule
67.Create a full adder. A full adder adds three bits (including carry-in) and produces a sum and carry-out.
module top_module( input a, b, cin, output cout, sum ); assign cout = a&b|a&cin|b&cin; assign sum = a^b^cin; endmodule
68.Now that you know how to build a full adder, make 3 instances of it to create a 3-bit binary ripple-carry adder. The adder adds two 3-bit numbers and a carry-in to produce a 3-bit sum and carry out. To encourage you to actually instantiate full adders, also output the carry-out from each full adder in the ripple-carry adder. cout[2] is the final carry-out from the last full adder, and is the carry-out you usually see.
module top_module( input [2:0] a, b, input cin, output [2:0] cout, output [2:0] sum ); fadd fadd1 (a[0],b[0],cin,cout[0],sum[0]); fadd fadd2 (a[1],b[1],cout[0],cout[1],sum[1]); fadd fadd3 (a[2],b[2],cout[1],cout[2],sum[2]); endmodule module fadd( input a, b, cin, output cout, sum ); assign cout = a&b|a&cin|b&cin; assign sum = a^b^cin; endmodule
69.Implement the following circuit:
module top_module ( input [3:0] x, input [3:0] y, output [4:0] sum); wire [2:0] cout; wire cin; assign cin = 1'b0; fadd fadd0 (x[0],y[0],cin,cout[0],sum[0]); fadd fadd1 (x[1],y[1],cout[0],cout[1],sum[1]); fadd fadd2 (x[2],y[2],cout[1],cout[2],sum[2]); fadd fadd3 (x[3],y[3],cout[2],sum[4],sum[3]); endmodule module fadd( input a, b, cin, output cout, sum ); assign cout = a&b|a&cin|b&cin; assign sum = a^b^cin; endmodule // //答案这操作很6 // module top_module ( input [3:0] x, input [3:0] y, output [4:0] sum ); // This circuit is a 4-bit ripple-carry adder with carry-out. assign sum = x+y; // Verilog addition automatically produces the carry-out bit. // Verilog quirk: Even though the value of (x+y) includes the carry-out, (x+y) is still considered to be a 4-bit number (The max width of the two operands). // This is correct: // assign sum = (x+y); // But this is incorrect: // assign sum = {x+y}; // Concatenation operator: This discards the carry-out endmodule
70.Assume that you have two 8-bit 2's complement numbers, a[7:0] and b[7:0]. These numbers are added to produce s[7:0]. Also compute whether a (signed) overflow has occurred.
HINT:A signed overflow occurs when adding two positive numbers produces a negative result, or adding two negative numbers produces a positive result. There are several methods to detect overflow: It could be computed by comparing the signs of the input and output numbers, or derived from the carry-out of bit n and n-1.
module top_module ( input [7:0] a, input [7:0] b, output [7:0] s, output overflow ); wire c; assign {c,s} = a+b; assign overflow = ~a[7]&~b[7]&s[7]|a[7]&b[7]&~s[7]; endmodule
71.Create a 100-bit binary adder. The adder adds two 100-bit numbers and a carry-in to produce a 100-bit sum and carry out.
71.Create a 100-bit binary adder. The adder adds two 100-bit numbers and a carry-in to produce a 100-bit sum and carry out. module top_module( input [99:0] a, b, input cin, output cout, output [99:0] sum ); assign {cout,sum} = a+b+cin; endmodule
72.You are provided with a BCD (binary-coded decimal) one-digit adder named bcd_fadd that adds two BCD digits and carry-in, and produces a sum and carry-out.
module bcd_fadd { input [3:0] a, input [3:0] b, input cin, output cout, output [3:0] sum );
Instantiate 4 copies of bcd_fadd to create a 4-digit BCD ripple-carry adder. Your adder should add two 4-digit BCD numbers (packed into 16-bit vectors) and a carry-in to produce a 4-digit sum and carry out.
1 module top_module( 2 input [15:0] a, b, 3 input cin, 4 output cout, 5 output [15:0] sum ); 6 wire [3:0] ccout; 7 bcd_fadd add0 (a[3:0],b[3:0],cin,ccout[0],sum[3:0]); 8 bcd_fadd add1 (a[7:4],b[7:4],ccout[0],ccout[1],sum[7:4]); 9 bcd_fadd add2 (a[11:8],b[11:8],ccout[1],ccout[2],sum[11:8]); 10 bcd_fadd add3 (a[15:12],b[15:12],ccout[2],ccout[3],sum[15:12]); 11 assign cout = ccout[3]; 12 endmodule 13 //Warning (10230): Verilog HDL assignment warning at tb_modules.sv(8): truncated value with size 32 to match size of target (4)
14 //File: /var/www/verilog/work/vlgRbJv4p_dir/tb_modules.sv Line: 8