951. 翻转等价二叉树

我们可以为二叉树 T 定义一个翻转操作,如下所示:选择任意节点,然后交换它的左子树和右子树。

只要经过一定次数的翻转操作后,能使 X 等于 Y,我们就称二叉树 X 翻转等价于二叉树 Y。

编写一个判断两个二叉树是否是翻转等价的函数。这些树由根节点 root1 和 root2 给出。

示例:

输入:root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7]
输出:true
解释:我们翻转值为 1,3 以及 5 的三个节点。

 

方法一: 递归
思路

如果二叉树 root1,root2 根节点值相等,那么只需要检查他们的孩子是不是相等就可以了。

算法

存在三种情况:

如果 root1 或者 root2 是 null,那么只有在他们都为 null 的情况下这两个二叉树才等价。
如果 root1,root2 的值不相等,那这两个二叉树的一定不等价。
如果以上条件都不满足,也就是当 root1 和 root2 的值相等的情况下,需要继续判断 root1 的孩子节点是不是跟 root2 的孩子节点相当。因为可以做翻转操作,所以这里有两种情况需要去判断。

 

class Solution {
    public boolean flipEquiv(TreeNode root1, TreeNode root2) {
        if (root1 == root2)
            return true;
        if (root1 == null || root2 == null || root1.val != root2.val)
            return false;

        return (flipEquiv(root1.left, root2.left) && flipEquiv(root1.right, root2.right) ||
                flipEquiv(root1.left, root2.right) && flipEquiv(root1.right, root2.left));
    }
}

 

posted @ 2021-04-29 09:51  kpwong  阅读(71)  评论(0编辑  收藏  举报