一道奇怪的求和题

函数:

\[f(n)=\frac{n^2}{1+n^2} \]

数列:

\[\sum^{n}_{n=1} m_n = f(1) + f(2) + f(\frac{1}{2}) + ... + f(n) + f(\frac{1}{n}) \]

推导规律:

\[f(1) = \frac{1}{2}\\ f(2) = \frac{2^2}{1+2^2} = \frac{4}{5}\\ f(\frac{1}{2}) = \frac{1}{5}\\ \]

可得:\(f(n) + f(\frac{1}{n}) = 1\)

由此我们可以知道,在数列中存在\(n-1\)对的\(f(n) + f(\frac{1}{n})\),剩下的一项是\(f(1)=\frac{1}{2}\),易得:

\[f(1) + f(2) + f(\frac{1}{2}) + ... + f(n) + f(\frac{1}{n})\\ = \frac{1}{2} + n - 1\\ = n - \frac{1}{2} \]

最后,得到

\[\sum^{n}_{n=1} m_n = n - \frac{1}{2} \]

不知道对不对……

posted @ 2020-06-18 21:39  kozumi  阅读(125)  评论(0编辑  收藏  举报