tensorflow_keras_预训练模型_Applications接口的使用
在很多复杂的计算机视觉问题上,我们需要使用层次相对较深的卷积神经网络才能得到好结果,但是自己从头去构建卷积神经网络是一个耗时耗力的事情,而且还不一定能训练好。大家通常用到最多的技巧是,使用“预训练好的模型”初始化模型,再在自己的数据集上进行后续处理。
这里记录学习keras预训练模型的笔记。
-
Keras中文官方文档(https://keras.io/zh/)
-
Keras应用 Applications(https://keras.io/zh/applications/)
-
Keras 的应用模块(keras.applications)提供了带有预训练权值的深度学习模型,这些模型可以用来进行预测、特征提取和微调(fine-tuning)
-
可用的模型
在 ImageNet 上预训练过的用于图像分类的模型:
- Xception
- VGG16
- VGG19
- ResNet, ResNetV2, ResNeXt
- InceptionV3
- InceptionResNetV2
- MobileNet
- MobileNetV2
- DenseNet
- NASNet
具体请看Keras中文官网,讲的非常详细
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)