02_opencv_python_图像处理进阶
1 灰度图
import cv2 # opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt # Matplotlib是RGB %matplotlib inline img=cv2.imread('cat.jpg') img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) img_gray.shape
cv2.imshow("img_gray", img_gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
2 HSV
- H - 色调(主波长)。
- S - 饱和度(纯度/颜色的阴影)。
- V值(强度)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) cv2.imshow("hsv", hsv) cv2.waitKey(0) cv2.destroyAllWindows()
3 图像阈值
参考上篇博客中的 基于颜色提出目标
# 1.将RGB转换成HSV色彩空间 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # 2.定义数组,说明你要提取(过滤)的颜色目标 # 三通道,所以是三个参数 # 红色 lower_hsv_r = np.array([156, 43, 46]) upper_hsv_r = np.array([180, 255, 255]) # 3.进行过滤,提取,得到二值图像 mask_red = cv2.inRange(hsv, lower_hsv_r, upper_hsv_r) # 通道数是 1
3.1 ret, dst = cv2.threshold(src, thresh, maxval, type)
- src: 输入图,只能输入单通道图像,通常来说为灰度图
- dst: 输出图
- thresh: 阈值
- maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
-
type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV
-
cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0
- cv2.THRESH_BINARY_INV THRESH_BINARY的反转
- cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变
- cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
- cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY) ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV) ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC) ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO) ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV) titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV'] images = [img, thresh1, thresh2, thresh3, thresh4, thresh5] for i in range(6): plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray') plt.title(titles[i]) plt.xticks([]), plt.yticks([]) plt.show()
4 图像平滑(利用各种卷积核)
img = cv2.imread('lenaNoise.png') # 椒盐噪音 cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows()
# 均值滤波 # 简单的平均卷积操作 blur = cv2.blur(img, (3, 3)) cv2.imshow('blur', blur) cv2.waitKey(0) cv2.destroyAllWindows()
# 方框滤波 # 基本和均值一样,可以选择归一化 box = cv2.boxFilter(img,-1,(3,3), normalize=True) cv2.imshow('box', box) cv2.waitKey(0) cv2.destroyAllWindows()
# 高斯滤波 # 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的 aussian = cv2.GaussianBlur(img, (5, 5), 1) cv2.imshow('aussian', aussian) cv2.waitKey(0) cv2.destroyAllWindows()
# 中值滤波 # 相当于用中值代替 median = cv2.medianBlur(img, 5) # 中值滤波 cv2.imshow('median', median) cv2.waitKey(0) cv2.destroyAllWindows()
# 展示所有的 res = np.hstack((blur,aussian,median)) #print (res) cv2.imshow('median vs average', res) cv2.waitKey(0) cv2.destroyAllWindows()
5 形态学-腐蚀操作