梯度下降算法改进笔记

 

 

 作业:

 自己实现动量梯度下降Adam梯度下降算法

优化算法:

import numpy as np
import matplotlib.pyplot as plt
import math
import sklearn
import sklearn.datasets

# 前向传播,计算损失,反向传播
from utils import initialize_parameters, forward_propagation, compute_cost, backward_propagation
from utils import load_dataset, predict


def random_mini_batches(X, Y, mini_batch_size=64, seed=0):
    """
    创建每批次固定数量特征值和目标值
    """

    np.random.seed(seed)
    # 样本数量
    m = X.shape[1]
    mini_batches = []

    # 对所有数据进行打乱
    permutation = list(np.random.permutation(m))

    shuffled_X = X[:, permutation]
    shuffled_Y = Y[:, permutation].reshape((1, m))

    # 循环将每批次数据按照固定格式装进列表当中
    num_complete_minibatches = math.floor(
        m / mini_batch_size)

    # 所有训练数据分成多少组
    for k in range(0, num_complete_minibatches):
        mini_batch_X = shuffled_X[:, k * mini_batch_size: (k + 1) * mini_batch_size]
        mini_batch_Y = shuffled_Y[:, k * mini_batch_size: (k + 1) * mini_batch_size]
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)

    # 最后剩下的样本数量mini-batch < mini_batch_size
    if m % mini_batch_size != 0:
        mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size:]
        mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size:]
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)

    return mini_batches


def initialize_momentum(parameters):
    """
    初始化网络中每一层的动量梯度下降的指数加权平均结果参数
    parameters['W' + str(l)] = Wl
    parameters['b' + str(l)] = bl
    return:
    v['dW' + str(l)] = velocity of dWl
    v['db' + str(l)] = velocity of dbl
    """
    # 得到网络的层数
    L = len(parameters) // 2
    v = {}

    # 初始化动量参数
    for l in range(L):
        v["dW" + str(l + 1)] = np.zeros(parameters['W' + str(l + 1)].shape)
        v["db" + str(l + 1)] = np.zeros(parameters['b' + str(l + 1)].shape)

    return v


def update_parameters_with_momentum(parameters, gradients, v, beta, learning_rate):
    """
    动量梯度下降算法实现
    """
    # 得到网络的层数
    L = len(parameters) // 2

    # 动量梯度参数更新
    for l in range(L):

        # 开始

        # 1.计算梯度的指数加权平均数
        v["dW" + str(l + 1)] = beta * v["dW" + str(l + 1)] + (1 - beta) * gradients["dW" + str(l + 1)]
        v["db" + str(l + 1)] = beta * v["db" + str(l + 1)] + (1 - beta) * gradients["db" + str(l + 1)]
        # 2.利用该值来更新参数
        parameters['W' + str(l + 1)] -= learning_rate * v["dW" + str(l + 1)]
        parameters['b' + str(l + 1)] -= learning_rate * v["db" + str(l + 1)]
        # 结束

    return parameters, v


def initialize_adam(parameters):
    """
    初始化Adam算法中的参数
    parameters['W' + str(l)] = Wl
    parameters['b' + str(l)] = bl
    return:
    v['dW' + str(l)] = velocity of v_dWl
    v['db' + str(l)] = velocity of v_dbl
    s['dw' + str(l)] = velocity of s_dwl
    s['db' + str(l)] = velocity of s_dbl
    """
    # 得到网络的参数
    L = len(parameters) // 2
    v = {}
    s = {}

    # 利用输入,初始化参数v,s
    for l in range(L):

        v["dW" + str(l + 1)] = np.zeros(parameters['W' + str(l + 1)].shape)
        v["db" + str(l + 1)] = np.zeros(parameters['b' + str(l + 1)].shape)
        s["dW" + str(l + 1)] = np.zeros(parameters['W' + str(l + 1)].shape)
        s["db" + str(l + 1)] = np.zeros(parameters['b' + str(l + 1)].shape)

    return v, s


def update_parameters_with_adam(parameters, gradients, v, s, t, learning_rate=0.01,
                                beta1=0.9, beta2=0.999, epsilon=1e-8):
    """
    更新Adam算法网络的参数
    """
    # 网络大小
    L = len(parameters) // 2
    v_corrected = {}
    s_corrected = {}

    # 更新所有参数
    for l in range(L):
        # 对梯度进行移动平均计算. 输入: "v, gradients, beta1". 输出: "v".
        # 开始
        v["dW" + str(l + 1)] = beta1 * v['dW' + str(l + 1)] + (1 - beta1) * gradients['dW' + str(l + 1)]
        v["db" + str(l + 1)] = beta1 * v['db' + str(l + 1)] + (1 - beta1) * gradients['db' + str(l + 1)]
        # 结束

        # 计算修正结果. 输入: "v, beta1, t". 输出: "v_corrected".
        # 开始
        v_corrected["dW" + str(l + 1)] = v['dW' + str(l + 1)] / (1 - np.power(beta1, t))
        v_corrected["db" + str(l + 1)] = v['db' + str(l + 1)] / (1 - np.power(beta1, t))
        # 结束

        # 平方梯度的移动平均值. 输入: "s, gradients, beta2". 输出: "s".
        # 开始
        s["dW" + str(l + 1)] = beta2 * s['dW' + str(l + 1)] + (1 - beta2) * np.power(gradients['dW' + str(l + 1)], 2)
        s["db" + str(l + 1)] = beta2 * s['db' + str(l + 1)] + (1 - beta2) * np.power(gradients['db' + str(l + 1)], 2)
        # 结束

        # 计算修正的结果. 输入: "s, beta2, t". 输出: "s_corrected".
        # 开始
        s_corrected["dW" + str(l + 1)] = s['dW' + str(l + 1)] / (1 - np.power(beta2, t))
        s_corrected["db" + str(l + 1)] = s['db' + str(l + 1)] / (1 - np.power(beta2, t))
        # 结束

        # 更新参数. 输入: "parameters, learning_rate, v_corrected, s_corrected, epsilon". 输出: "parameters".
        # 开始
        parameters["W" + str(l + 1)] = parameters['W' + str(l + 1)] - learning_rate * v_corrected[
            'dW' + str(l + 1)] / np.sqrt(s_corrected['dW' + str(l + 1)] + epsilon)
        parameters["b" + str(l + 1)] = parameters['b' + str(l + 1)] - learning_rate * v_corrected[
            'db' + str(l + 1)] / np.sqrt(s_corrected['db' + str(l + 1)] + epsilon)
        # 结束

    return parameters, v, s


def model(X, Y, optimizer, learning_rate=0.0007, mini_batch_size=64, beta=0.9,
          beta1=0.9, beta2=0.999, epsilon=1e-8, num_epochs=10000, print_cost=True):
    """
    模型逻辑
    定义一个三层网络(不包括输入层)
    第一个隐层:5个神经元
    第二个隐层:2个神经元
    输出层:1个神经元
    """
    # 计算网络的层数
    layers_dims = [train_X.shape[0], 5, 2, 1]

    L = len(layers_dims)
    costs = []
    t = 0
    seed = 10

    # 初始化网络结构
    parameters = initialize_parameters(layers_dims)

    # 初始化优化器参数
    if optimizer == "momentum":
        v = initialize_momentum(parameters)
    elif optimizer == "adam":
        v, s = initialize_adam(parameters)

    # 优化逻辑
    for i in range(num_epochs):

        # 每次迭代所有样本顺序打乱不一样
        seed = seed + 1
        # 获取每批次数据
        minibatches = random_mini_batches(X, Y, mini_batch_size, seed)
        # print("minibatches到底是啥", minibatches)
        # mini_batch = (mini_batch_X, mini_batch_Y)
        # mini_batches.append(mini_batch)

        # 开始
        for minibatch in minibatches:

            # 1.准备数据(minibatch每批次的数据)
            mini_batch_X, mini_batch_Y = minibatch

            # 2.前向传播
            a3, cache = forward_propagation(mini_batch_X, parameters)

            # 3.计算损失
            cost = compute_cost(a3, mini_batch_Y)

            # 4.反向传播,回传损失,返回梯度
            gradients = backward_propagation(mini_batch_X, mini_batch_Y, cache)

            # 5.利用梯度更新参数
            if optimizer == "momentum":
                parameters, v = update_parameters_with_momentum(parameters, gradients, v, beta, learning_rate)
            elif optimizer == "adam":
                # todo
                t = t + 1
                parameters, v, s = update_parameters_with_adam(parameters, gradients, v, s, t, learning_rate,
                                            beta1, beta2, epsilon)



        # 结束

        # 每个1000批次打印损失
        if print_cost and i % 1000 == 0:
            print("第 %i 次迭代的损失值: %f" % (i, cost))
        if print_cost and i % 100 == 0:
            costs.append(cost)

    # 画出损失的变化
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('epochs (per 100)')
    plt.title("损失图")
    plt.show()

    return parameters


if __name__ == '__main__':

    train_X, train_Y = load_dataset()

    parameters = model(train_X, train_Y, optimizer="adam")

    predictions = predict(train_X, train_Y, parameters)

 

辅助代码(初始化参数+前向传播+计算损失+反向传播(计算梯度)+进行预测+加载数据集....):

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy.io
import sklearn
import sklearn.datasets


def sigmoid(x):
    """
    Compute the sigmoid of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(x)
    """
    s = 1/(1+np.exp(-x))
    return s


def relu(x):
    """
    Compute the relu of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- relu(x)
    """
    s = np.maximum(0,x)
    
    return s


def initialize_parameters(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    b1 -- bias vector of shape (layer_dims[l], 1)
                    Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
                    bl -- bias vector of shape (1, layer_dims[l])
                    
    Tips:
    - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. 
    This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
    - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
    """
    
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims) # number of layers in the network

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])*  np.sqrt(2 / layer_dims[l-1])
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
        
        assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
        assert(parameters['W' + str(l)].shape == layer_dims[l], 1)
        
    return parameters


def compute_cost(a3, Y):
    
    """
    Implement the cost function
    
    Arguments:
    a3 -- post-activation, output of forward propagation
    Y -- "true" labels vector, same shape as a3
    
    Returns:
    cost - value of the cost function
    """
    m = Y.shape[1]
    
    logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
    cost = 1./m * np.sum(logprobs)
    
    return cost


def forward_propagation(X, parameters):
    """
    Implements the forward propagation (and computes the loss) presented in Figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape ()
                    b1 -- bias vector of shape ()
                    W2 -- weight matrix of shape ()
                    b2 -- bias vector of shape ()
                    W3 -- weight matrix of shape ()
                    b3 -- bias vector of shape ()
    
    Returns:
    loss -- the loss function (vanilla logistic loss)
    """
    
    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    z1 = np.dot(W1, X) + b1
    a1 = relu(z1)
    z2 = np.dot(W2, a1) + b2
    a2 = relu(z2)
    z3 = np.dot(W3, a2) + b3
    a3 = sigmoid(z3)
    
    cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)
    
    return a3, cache


def backward_propagation(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    cache -- cache output from forward_propagation()
    
    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    m = X.shape[1]
    (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache
    
    dz3 = 1./m * (a3 - Y)
    dW3 = np.dot(dz3, a2.T)
    db3 = np.sum(dz3, axis=1, keepdims = True)
    
    da2 = np.dot(W3.T, dz3)
    dz2 = np.multiply(da2, np.int64(a2 > 0))
    dW2 = np.dot(dz2, a1.T)
    db2 = np.sum(dz2, axis=1, keepdims = True)
    
    da1 = np.dot(W2.T, dz2)
    dz1 = np.multiply(da1, np.int64(a1 > 0))
    dW1 = np.dot(dz1, X.T)
    db1 = np.sum(dz1, axis=1, keepdims = True)
    
    gradients = {"dz3": dz3, "dW3": dW3, "db3": db3,
                 "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
                 "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}
    
    return gradients


def predict(X, y, parameters):
    """
    This function is used to predict the results of a  n-layer neural network.
    
    Arguments:
    X -- data set of examples you would like to label
    parameters -- parameters of the trained model
    
    Returns:
    p -- predictions for the given dataset X
    """
    
    m = X.shape[1]
    p = np.zeros((1,m), dtype = np.int)
    
    # Forward propagation
    a3, caches = forward_propagation(X, parameters)
    
    # convert probas to 0/1 predictions
    for i in range(0, a3.shape[1]):
        if a3[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0

    print("Accuracy: "  + str(np.mean((p[0,:] == y[0,:]))))
    
    return p


def load_dataset():
    np.random.seed(3)
    train_X, train_Y = sklearn.datasets.make_moons(n_samples=300, noise=.2)
    train_X = train_X.T
    train_Y = train_Y.reshape((1, train_Y.shape[0]))
    return train_X, train_Y

 

posted @ 2019-06-24 22:22  胖白白  阅读(616)  评论(0编辑  收藏  举报