(第三章)TF框架之实现验证码识别

 

这里实现一个用神经网络(卷积神经网络也可以)实现验证码识别的小案例,主要记录本人做这个案例的流程,不会像之前那么详细,主要用作个人记录用。。。

    • 这里是验证码的四个字母,被one-hot编码后形成的四个一维数组,[1, 26] * 4 ----> 可以转变成[4, 26] ----> [1, 104]
    • 第一个位置:[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]

    • 第二个位置:[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

    • 第三个位置:[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]

    • 第四个位置:[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]

  • 字母验证码识别设计:

    • 这两个(真实值和预测值)104的一阶张量进行交叉熵损失计算,得出损失大小。会提高四个位置的概率,使得4组中每组26个目标值中为1的位置对应的预测概率值越来越大,在预测的四组当中概率值最大。这样得出预测中每组的字母位置。所有104个概率相加为1

  • 流程设计

    • 1、把图片的特征值和目标值,-----> 转换成tfrecords格式,方便数据特征值、目标值统一读取

      • [b'NZPP' b'WKHK' b'WPSJ' ..., b'FVQJ' b'BQYA' b'BCHR'] -----> [[13, 25, 15, 15], [22, 10, 7, 10], [22, 15, 18, 9], [16, 6, 13, 10]]

      • "ABCD……Z" —>"0, 1, …, 25"

    • 2、训练验证码、准确率的计算

 

将原来的图片数据(特征)和csv数据(标签)------> 转变为tfrecords格式的数据,注意example协议(序列化后)

代码如下:

import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'


FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("tfrecords_dir", "./tfrecords/captcha.tfrecords", "验证码tfrecords文件")
tf.app.flags.DEFINE_string("captcha_dir", "../data/Genpics/", "验证码图片路径")
tf.app.flags.DEFINE_string("letter", "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "验证码字符的种类")


def dealwithlabel(label_str):

    # 构建字符索引 {0:'A', 1:'B'......}
    num_letter = dict(enumerate(list(FLAGS.letter)))

    # 键值对反转 {'A':0, 'B':1......}
    letter_num = dict(zip(num_letter.values(), num_letter.keys()))

    print(letter_num)

    # 构建标签的列表
    array = []

    # 给标签数据进行处理[[b"NZPP"], ......]
    for string in label_str:

        letter_list = []# [1,2,3,4]

        # 修改编码,b'FVQJ'到字符串,并且循环找到每张验证码的字符对应的数字标记
        for letter in string.decode('utf-8'):
            letter_list.append(letter_num[letter])

        array.append(letter_list)

    # [[13, 25, 15, 15], [22, 10, 7, 10], [22, 15, 18, 9], [16, 6, 13, 10], [1, 0, 8, 17], [0, 9, 24, 14].....]
    print(array)

    # 将array转换成tensor类型
    label = tf.constant(array)

    return label


def get_captcha_image():
    """
    获取验证码图片数据
    :param file_list: 路径+文件名列表
    :return: image
    """
    # 构造文件名
    filename = []

    for i in range(6000):
        string = str(i) + ".jpg"
        filename.append(string)

    # 构造路径+文件
    file_list = [os.path.join(FLAGS.captcha_dir, file) for file in filename]

    # 构造文件队列
    file_queue = tf.train.string_input_producer(file_list, shuffle=False)

    # 构造阅读器
    reader = tf.WholeFileReader()

    # 读取图片数据内容
    key, value = reader.read(file_queue)

    # 解码图片数据
    image = tf.image.decode_jpeg(value)

    image.set_shape([20, 80, 3])

    # 批处理数据 [6000, 20, 80, 3]
    image_batch = tf.train.batch([image], batch_size=6000, num_threads=1, capacity=6000)

    return image_batch


def get_captcha_label():
    """
    读取验证码图片标签数据
    :return: label
    """
    file_queue = tf.train.string_input_producer(["../data/Genpics/labels.csv"], shuffle=False)

    reader = tf.TextLineReader()

    key, value = reader.read(file_queue)

    records = [[1], ["None"]]

    number, label = tf.decode_csv(value, record_defaults=records)

    # [["NZPP"], ["WKHK"], ["ASDY"]]
    label_batch = tf.train.batch([label], batch_size=6000, num_threads=1, capacity=6000)

    return label_batch


def write_to_tfrecords(image_batch, label_batch):
    """
    将图片内容和标签写入到tfrecords文件当中
    :param image_batch: 特征值
    :param label_batch: 标签值
    :return: None
    """
    # 转换类型
    label_batch = tf.cast(label_batch, tf.uint8)

    print(label_batch)

    # 建立TFRecords 存储器
    writer = tf.python_io.TFRecordWriter(FLAGS.tfrecords_dir)

    # 循环将每一个图片上的数据构造example协议块,序列化后写入
    for i in range(6000):
        # 取出第i个图片数据,转换相应类型,图片的特征值要转换成字符串形式
        image_string = image_batch[i].eval().tostring()

        # 标签值,转换成整型
        label_string = label_batch[i].eval().tostring()

        # 构造协议块
        example = tf.train.Example(features=tf.train.Features(feature={
            "image": tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_string])),
            "label": tf.train.Feature(bytes_list=tf.train.BytesList(value=[label_string]))
        }))

        writer.write(example.SerializeToString())

    # 关闭文件
    writer.close()

    return None


if __name__ == "__main__":

    # 获取验证码文件当中的图片
    image_batch = get_captcha_image()

    # 获取验证码文件当中的标签数据
    label = get_captcha_label()

    print(image_batch, label)

    with tf.Session() as sess:

        coord = tf.train.Coordinator()

        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        # [b'NZPP' b'WKHK' b'WPSJ' ..., b'FVQJ' b'BQYA' b'BCHR']
        label_str = sess.run(label)

        print(label_str)

        # 处理字符串标签到数字张量
        label_batch = dealwithlabel(label_str)

        print(label_batch)

        # 将图片数据和内容写入到tfrecords文件当中
        write_to_tfrecords(image_batch, label_batch)

        coord.request_stop()

        coord.join(threads)
  • 训练验证码,得到准确率的代码
import tensorflow as tf


class CaptchaIdentification(object):
    """
    验证码的读取数据、网络训练
    """
    def __init__(self):

        # 验证码图片的属性
        self.height = 20
        self.width = 80
        self.channel = 3
        # 每个验证码的目标值个数(4个字符)
        self.label_num = 4
        self.feature_num = 26

        # 每批次训练样本个数
        self.train_batch = 100

    @staticmethod
    def weight_variables(shape):
        w = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=0.1))
        return w

    @staticmethod
    def bias_variables(shape):
        b = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=0.1))
        return b

    def read_captcha_tfrecords(self):
        """
        读取验证码特征值和目标值数据
        :return:
        """
        # 1、构造文件的队列
        file_queue = tf.train.string_input_producer(["./tfrecords/captcha.tfrecords"])

        # 2、tf.TFRecordReader 读取TFRecords数据
        reader = tf.TFRecordReader()

        # 单个样本数据
        key, value = reader.read(file_queue)

        # 3、解析example协议
        feature = tf.parse_single_example(value, features={
            "image": tf.FixedLenFeature([], tf.string),
            "label": tf.FixedLenFeature([], tf.string)
        })

        # 4、解码操作、数据类型、形状
        image = tf.decode_raw(feature["image"], tf.uint8)
        label = tf.decode_raw(feature["label"], tf.uint8)

        # 确定类型和形状
        # 图片形状 [20, 80, 3]
        # 目标值 [4]
        image_reshape = tf.reshape(image, [self.height, self.width, self.channel])
        label_reshape = tf.reshape(label, [self.label_num])

        # 类型
        image_type = tf.cast(image_reshape, tf.float32)
        label_type = tf.cast(label_reshape, tf.int32)

        # 5、 批处理
        # print(image_type, label_type)
        # 提供每批次多少样本去进行训练
        image_batch, label_batch = tf.train.batch([image_type, label_type],
                                                   batch_size=self.train_batch,
                                                   num_threads=1,
                                                   capacity=self.train_batch)
        print(image_batch, label_batch)
        return image_batch, label_batch

    def captcha_model(self, image_batch):
        """
        建立全连接层网络
        :param image_batch: 验证码图片特征值
        :return: 预测结果
        """
        # 全连接层
        # [100, 20, 80, 3] --->[100, 20 * 80 * 3]
        # [100, 20 * 80 * 3] * [20 * 80 * 3, 104] + [104] = [None, 104] 104 = 4*26
        with tf.variable_scope("captcha_fc_model"):
            # 初始化权重和偏置参数
            self.weight = self.weight_variables([20 * 80 * 3, 104])

            self.bias = self.bias_variables([104])

            # 4维---->2维做矩阵运算
            x_reshape = tf.reshape(image_batch, [self.train_batch, 20 * 80 * 3])

            # [self.train_batch, 104]
            y_predict = tf.matmul(x_reshape, self.weight) + self.bias

        return y_predict

    def loss(self, y_true, y_predict):
        """
        建立验证码4个目标值的损失
        :param y_true: 真实值
        :param y_predict: 预测值
        :return: loss
        """
        with tf.variable_scope("loss"):
            # 先进行网络输出的值的概率计算softmax,在进行交叉熵损失计算
            # y_true:[100, 4, 26]------>[None, 104]
            # y_predict:[100, 104]
            y_reshape = tf.reshape(y_true,
                                   [self.train_batch, self.label_num * self.feature_num])

            all_loss = tf.nn.softmax_cross_entropy_with_logits(labels=y_reshape,
                                                               logits=y_predict,
                                                               name="compute_loss")
            # 求出平均损失
            loss = tf.reduce_mean(all_loss)

        return loss

    def turn_to_onehot(self, label_batch):
        """
        目标值转换成one_hot编码
        :param label_batch: 目标值 [None, 4]
        :return:
        """
        with tf.variable_scope("one_hot"):

            # [None, 4]--->[None, 4, 26]
            y_true = tf.one_hot(label_batch,
                                depth=self.feature_num,
                                on_value=1.0)
        return y_true

    def sgd(self, loss):
        """
        梯度下降优化损失
        :param loss:
        :return: train_op
        """
        with tf.variable_scope("sgd"):

            train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

        return train_op

    def acc(self, y_true, y_predict):
        """
        计算准确率
        :param y_true: 真实值
        :param y_predict: 预测值
        :return: accuracy
        """
        with tf.variable_scope("acc"):

            # y_true:[None, 4, 26]
            # y_predict:[None, 104]
            y_predict_reshape = tf.reshape(y_predict, [self.train_batch, self.label_num, self.feature_num])

            # 先对最大值的位置去求解  这里的2指的是维度
            euqal_list = tf.equal(tf.argmax(y_true, 2), tf.argmax(y_predict_reshape, 2))

            # 需要对每个样本进行判断  这里的1指的是维度
            #  x = tf.constant([[True,  True], [False, False]])
            #  tf.reduce_all(x, 1)  # [True, False]
            accuracy = tf.reduce_mean(tf.cast(tf.reduce_all(euqal_list, 1), tf.float32))

        return accuracy

    def train(self):
        """
        模型训练逻辑
        :return:
        """
        # 1、通过接口获取特征值和目标值
        # image_batch:[100, 20, 80, 3]
        # label_batch: [100, 4]
        # [[13, 25, 15, 15], [22, 10, 7, 10]]
        image_batch, label_batch = self.read_captcha_tfrecords()

        # 2、建立验证码识别的模型
        # 全连接层神经网络
        # y_predict [100, 104]
        y_predict = self.captcha_model(image_batch)

        # 转换label_batch 到one_hot编码
        # y_true:[None, 4, 26]
        y_true = self.turn_to_onehot(label_batch)

        # 3、利用真实值和目标值建立损失
        loss = self.loss(y_true, y_predict)

        # 4、对损失进行梯度下降优化
        train_op = self.sgd(loss)

        # 5、计算准确率
        accuracy = self.acc(y_true, y_predict)

        # 会话训练
        with tf.Session() as sess:

            sess.run(tf.global_variables_initializer())

            # 生成线程的管理
            coord = tf.train.Coordinator()

            # 指定开启子线程去读取数据
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)

            # 循环训练打印结果
            for i in range(1000):

                _, acc_run = sess.run([train_op, accuracy])

                print("第 %d 次训练的准确率为:%f " % (i, acc_run))

            # 回收线程
            coord.request_stop()

            coord.join(threads)

        return None


if __name__ == '__main__':
    ci = CaptchaIdentification()
    ci.train()

 

posted @ 2019-06-22 09:48  胖白白  阅读(729)  评论(0编辑  收藏  举报