【NumPy】 之常见运算(np.around、np.floor、np.ceil、np.where)(转)

原博客链接:https://blog.csdn.net/tz_zs/article/details/80775256 np.around: 四舍五入取整 n = np.array([-0.746, 4.6, 9.4, 7.447, 10.455, 11.555]) around1 = np.around(n) print(around1) # [ -1. 5. 9. 7. 10. 12.] np.floor: 向下取整 n = np.array([-1.7, -2.5, -0.2, 0.6, 1.2, 2.7, 11]) floor = np.floor(n) print(floor) # [ -2. -3. -1. 0. 1. 2. 11.] np.ceil: 向上取整 n = np.array([-1.7, -2.5, -0.2, 0.6, 1.2, 2.7, 11]) ceil = np.ceil(n) print(ceil) # [ -1. -2. -0. 1. 2. 3. 11.] np.where: 相当于三元运算符, data = [[ 0.93122679 0.82384876 0.28730977] [ 0.43006042 0.73168913 0.02775572]] result = np.where(data > 0.5, data, 0) print(result) ''' [[ 0.93122679 0.82384876 0. ] [ 0. 0.73168913 0. ]] '''
posted @   胖白白  阅读(1660)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
点击右上角即可分享
微信分享提示