你OUT了吗,for双层循环可以使用stream方式替代

本文已参与「新人创作礼」活动,一起开启掘金创作之路

大家好,我是桐言无忌,当前是不务正业的攻城狮,信奉“实践出真知,生活更简单”,向往自由。签名.PNG

糟粕代码

java8已经出了Stream流处理方式,但是实际业务开发时,大部分同学还是下意识的去写for双层循环。

陈旧代码

一眼看穿繁华。。。这段代码写法就是典型的for双层循环,我们再细看业务逻辑是判断List<T>所有对象元素中有无重复的,若有重复对象主键,则抛出业务异常。

其实业务场景不复杂,那完全可以使用Stream流处理方式,那么大家还是使用for双层循环的原因是什么呢?是习惯,还是处于性能考虑呢?

做个试验,验证看看。。。

试验场

首先模拟个场景:班级里面的学生,学生与班级的匹配,检查学生是否真正是有班级的。

  1. 先模拟学生类和班级类

    学生班级

  2. 再搞10W+的学生数量和班级数量,不是怀疑是性能吗?数量小了可不行

    学生数量

  3. 搞一个for双层循环方式

    // for双层循环的方式
    private static void doubleForMethod(List<Student> studentList, List<NoClass> noClassList) {
        // 现在用学生与班级进行匹配,如果是班级号一致,认为这个学生是本班级的
        for (int i = 0; i < studentList.size(); i++) {
            Student student = studentList.get(i);
            for (int j = 0; j < noClassList.size(); j++) {
                NoClass noClass = noClassList.get(j);
                if (student.getClassesId().equals(noClass.getClassId())) {
                    // System.out.println("该学生:" + student.getStuId() + "是有班级的");
                }
            }
        }
    }
    复制代码
  4. 再搞一个Stream流方式

    private static void streamMethod(List<Student> studentList, List<NoClass> noClassList) {
        // 把班级列表转成map,那么班级id就是唯一的id
        Map<String, NoClass> noClassMap = noClassList.stream().collect(Collectors.toMap(t -> t.getClassId(), t -> t));
        // 现在用学生与班级进行匹配,如果是班级号一致,认为这个学生是本班级的
        studentList.stream().forEach(h -> {
            if (noClassMap.containsKey(h.getClassesId())) {
                // System.out.println("该学生:" + h.getStuId() + "是有班级的");
            }
        });
    }
    复制代码
  5. 运行比较两者耗时情况

    耗时代码

    最终结果是:

    for双层循环方式耗时:80438ms

    Stream流方式耗时:80ms

同一个业务场景,二者处理结果相同,但耗时却是云泥之别,令人惊叹。

Stream在背后做了什么?

其实,我也不是很清楚,一起来学习吧。

知识忙去.PNG

如果一上来就了解最底层Stream是怎么实现的,这完全是和自己作对;你丫学《C语言程序设计》的时候,有学for(int i=0;i<n;i++)是怎么完成遍历的吗!

回答,肯定是没有呀。对一个知识的掌握,由浅入深,知其特性再探究原因,如果你非要一上来就看Stream源码,也行。我很期待哦,静静地看你表演。看你表演

Stream的分类

了解Stream原理之前,先要知道它的操作分类,因为Stream的操作分类就是实现高效迭代集合的原因之一。

操作分类

官方将 Stream 中的操作分为两大类:中间操作(Intermediate operations)和终结操作 (Terminal operations)。中间操作只对操作进行了记录,即只会返回一个流,不会进行计算操作,而终结操作是实现了计算操作。

中间操作又可以分为无状态(Stateless)与有状态(Stateful)操作,前者是指元素的处理不受之前元素的影响,后者是指该操作只有拿到所有元素之后才能继续下去。

终结操作又可以分为短路(Short-circuiting)与非短路(Unshort-circuiting)操作,前者是指遇到某些符合条件的元素就可以得到最终结果,后者是指必须处理完所有元素才能得到最终结果。

我们通常还会将中间操作称为懒操作,也正是由这种懒操作结合终结操作、数据源构成的处理管道(Pipeline),实现了 Stream 的高效。

Stream的特点

  1. 数据流从一头获取数据源,在流水线上依次对元素进行操作,当元素通过流水线,便无法再对其进行操作,可以重新在数据源获取一个新的数据流进行操作;

  2. 对Collection进行处理,一般会使用 Iterator 遍历器的遍历方式,这是一种外部迭代;

    而对于处理Stream,只要申明处理方式,处理过程由流对象自行完成,这是一种内部迭代,对于大量数据的迭代处理中,内部迭代比外部迭代要更加高效;

Stream的性能

那是不是Stream就能完全取代for方式,性能更优呢?也未必。

根据官方效率数据显示:

  1. 多核 CPU 服务器配置环境下,对比长度 100 的 int 数组的性能

    常规的迭代 <Stream 并行迭代 <Stream 串行迭代

  2. 多核 CPU 服务器配置环境下,对比长度 1.00E+8 的 int 数组的性能;

    Stream 并行迭代 < 常规的迭代 <Stream 串行迭代

  3. 多核 CPU 服务器配置环境下,对比长度 1.00E+8 对象数组过滤分组的性能;

    Stream 并行迭代 < 常规的迭代 <Stream 串行迭代

  4. 单核 CPU 服务器配置环境下,对比长度 1.00E+8 对象数组过滤分组的性能;

    常规的迭代 <Stream 串行迭代 <Stream 并行迭代

建议多使用Stream吧

按官方性能统计来看,使用Stream未必可以使得遍历性能更优,具体的要依赖数据量,即实际应用场景。

不过,在我们平时的业务开发中,我建议还是多使用Stream方式。效率是写代码的考虑因素,但不是绝对因素,随着技术的发展,执行效率一定会随着硬件发展而快速提高;对于写代码的人来说,代码一定要以简洁为原则,损失一点效率,换来的是高可读的代码,我觉得是非常值得的。

来源:https://juejin.cn/post/7057694629474336775
posted @ 2022-10-05 19:56  程序员小明1024  阅读(335)  评论(0编辑  收藏  举报