三种求最大公约数的方法
一、辗转相除法
原理:
辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。
原理
设两数为a、b(b<a),用gcd(a,b)表示a,b的最大公约数,r=a mod b 为a除以b以后的余数,k为a除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。
第一步:令c=gcd(a,b),则设a=mc,b=nc
第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c
第三步:根据第二步结果可知c也是r的因数
第四步:可以断定m-kn与n互质【否则,可设m-kn=xd,n=yd,(d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)dc,b=nc=ycd,故a与b最大公约数成为cd,而非c,与前面结论矛盾】
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕。
图示:
辗转相除法:以大数除以小数,如果能整除,那么小数就是所求的最大公约数(Greatest CommonDivisor:gcd)。否则就用余数来除刚才的除数;
再用这新除法的余数去除刚才的余数。依此类推,直到一个除法能够整除,这时作为除数的数就是所求的最大公约数。即:gcd(x,y)表示x与y的
最大公约数,有gcd(x,y)=gcd(y,x%y),如此便可把原问题转化为求两个更小数的公约数,直到其中一个数为0,剩下的另外一个数就是两者的最
大公约数。
代码:
1 #include <iostream> 2 #include <stdio.h> 3 #include <stdlib.h> 4 #include <ctype.h> 5 #include<string.h> 6 #include <math.h> 7 #include<algorithm> 8 using namespace std; 9 int gcd(int a,int b) 10 { 11 //不需要特判a与b的大小,如果a小于b,那么递归一次gcd两者就会交换值 12 return b?gcd(b,a%b):a; 13 } 14 int main() 15 { 16 printf("%d\n",gcd(2,4)); 17 }
二、更相减损法
原理:
更相减损术是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。
《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
翻译成现代语言如下:
第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。
其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法。
图示:
此算法简单来说是:将a和b减, 得到的差值赋值给c,并判断是否为0,如果不为0,则将b赋值给a,将c赋值给a, 然后重复上述步骤直到c为0。a-b=c,算法直观来看就是这个数学算式的左移操作,和辗转相除法实现方式很是接近,应该本源思路是一样的。
代码:
1 #include <iostream> 2 #include <stdio.h> 3 #include <stdlib.h> 4 #include <ctype.h> 5 #include<string.h> 6 #include <math.h> 7 #include<algorithm> 8 using namespace std; 9 int gcd(int a,int b) 10 { 11 int c = 0; 12 if(a<b) swap(a,b); 13 c = b; 14 do 15 { 16 b = c; 17 a>b ? c = a - b : c = b - a; 18 a = b; 19 } while (c != 0); 20 return b; 21 } 22 int main() 23 { 24 printf("%d\n",gcd(2,4)); 25 }
三、穷举法
找到两个数中那个小的,然后从它开始for循环,如果有满足的就输出然后break,否则就让这个值减去一再进行判断
代码:
1 #include <iostream> 2 #include <stdio.h> 3 #include <stdlib.h> 4 #include <ctype.h> 5 #include<string.h> 6 #include <math.h> 7 #include<algorithm> 8 using namespace std; 9 int gcd(int a,int b) 10 { 11 for(int i=min(a,b);i>=1;--i) 12 { 13 if(a%i==0 && b%i==0) return i; 14 } 15 } 16 int main() 17 { 18 printf("%d\n",gcd(2,4)); 19 }