第六周学习报告

本周划水水的一周,就写了一个实例,前面打基础的时候觉得不是很难,但真正上手的时候才知道灵活应用这些理论有多难,一百多行代码憋了好几天,还反复回去看QAQ

import copy, numpy as np
np.random.seed(0)

def sigmoid(x):
    output = 1/(1+np.exp(-x))
    return output

def sigmoid_output_to_derivative(output):
    return output*(1-output)


int2binary = {}
binary_dim = 8

largest_number = pow(2,binary_dim)
binary = np.unpackbits(
    np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
for i in range(largest_number):
    int2binary[i] = binary[i]


alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1


synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1

synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)

for j in range(10000):
    
    a_int = np.random.randint(largest_number/2) # int version
    a = int2binary[a_int] # binary encoding

    b_int = np.random.randint(largest_number/2) # int version
    b = int2binary[b_int] # binary encoding

    c_int = a_int + b_int
    c = int2binary[c_int]
    
    d = np.zeros_like(c)

    overallError = 0
    
    layer_2_deltas = list()
    layer_1_values = list()
    layer_1_values.append(np.zeros(hidden_dim))
    
    for position in range(binary_dim):
        
        X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
        y = np.array([[c[binary_dim - position - 1]]]).T

        layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))

        layer_2 = sigmoid(np.dot(layer_1,synapse_1))

        layer_2_error = y - layer_2
        layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
        overallError += np.abs(layer_2_error[0])
    
        d[binary_dim - position - 1] = np.round(layer_2[0][0])
        
        layer_1_values.append(copy.deepcopy(layer_1))
    
    future_layer_1_delta = np.zeros(hidden_dim)
    
    for position in range(binary_dim):
        
        X = np.array([[a[position],b[position]]])
        layer_1 = layer_1_values[-position-1]
        prev_layer_1 = layer_1_values[-position-2]
        
        layer_2_delta = layer_2_deltas[-position-1]
        layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)

        synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
        synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
        synapse_0_update += X.T.dot(layer_1_delta)
        
        future_layer_1_delta = layer_1_delta
    

    synapse_0 += synapse_0_update * alpha
    synapse_1 += synapse_1_update * alpha
    synapse_h += synapse_h_update * alpha    

    synapse_0_update *= 0
    synapse_1_update *= 0
    synapse_h_update *= 0
    
    if(j % 1000 == 0):
        print "Error:" + str(overallError)
        print "Pred:" + str(d)
        print "True:" + str(c)
        out = 0
        for index,x in enumerate(reversed(d)):
            out += x*pow(2,index)
        print str(a_int) + " + " + str(b_int) + " = " + str(out)
        print "------------"

        
posted @ 2020-08-23 14:46  konelee  阅读(95)  评论(0编辑  收藏  举报