YOLO-V5-超参数介绍及优化策略

yaml文件

模型深度&宽度

nc: 3  # 类别数量
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

depth_multiple:控制子模块数量=int(number*depth)

width_multiple:控制卷积核的数量=int(number*width)

Anchor

anchors:
  - [10,13, 16,30, 33,23]  # P3/8,检测小目标,10,13是一组尺寸,总共三组检测小目标
  - [30,61, 62,45, 59,119]  # P4/16,检测中目标,共三组
  - [116,90, 156,198, 373,326]  # P5/32,检测大目标,共三组

该anchor尺寸是为输入图像640×640分辨率预设的,实现了即可以在小特征图(feature map)上检测大目标,也可以在大特征图上检测小目标。三种尺寸的特征图,每个特征图上的格子有三个尺寸的anchor。

Backbone

backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, C3, [1024, False]],  # 9
  ]

具体解释如下:

from:输入来自那一层,-1代表上一次,1代表第1层,3代表第3层
number:模块的数量,最终数量需要乘width,然后四舍五入取整,如果小于1,取1。
module:子模块
args:模块参数,channel,kernel_size,stride,padding,bias等
Focus:对特征图进行切片操作,[64,3]得到[3,32,3],即输入channel=3(RGB),输出为640.5(width_multiple)=32,3为卷积核尺寸。
Conv:nn.conv(kenel_size=1,stride=1,groups=1,bias=False) + Bn + Leaky_ReLu。[-1, 1, Conv, [128, 3, 2]]:输入来自上一层,模块数量为1个,子模块为Conv,网络中最终有128
0.5=32个卷积核,卷积核尺寸为3,stride=2,。
BottleNeckCSP:借鉴CSPNet网络结构,由3个卷积层和X个残差模块Concat组成,若有False,则没有残差模块,那么组成结构为nn.conv+Bn+Leaky_ReLu
SPP:[-1, 1, SPP, [1024, [5, 9, 13]]]表示5×5,9×9,13×13的最大池化方式,进行多尺度融合。源代码如下:

k = [5, 9, 13]
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

Head

head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],  上采样
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4  代表concat上一层和第6层
   [-1, 3, C3, [512, False]],  # 13  说明该层是第13层网络
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5),[17, 20, 23]说明输入来自第17,20,23层
  

YOLOv5中的Head包括Neck和Detect_head两部分。Neck采用了PANet机构,Detect结构和YOLOv3中的Head一样。其中BottleNeckCSP带有False,说明没有使用残差结构,而是采用的backbone中的Conv。

超参数

初始化超参
YOLOv5的超参文件见data/hyp.finetune.yaml(适用VOC数据集)或者hyo.scrach.yaml(适用COCO数据集)文件

lr0: 0.01  # 初始学习率 (SGD=1E-2, Adam=1E-3)
lrf: 0.2  # 循环学习率 (lr0 * lrf)
momentum: 0.937  # SGD momentum/Adam beta1 学习率动量
weight_decay: 0.0005  # 权重衰减系数 
warmup_epochs: 3.0  # 预热学习 (fractions ok)
warmup_momentum: 0.8  # 预热学习动量
warmup_bias_lr: 0.1  # 预热初始学习率
box: 0.05  # iou损失系数
cls: 0.5  # cls损失系数
cls_pw: 1.0  # cls BCELoss正样本权重
obj: 1.0  # 有无物体系数(scale with pixels)
obj_pw: 1.0  # 有无物体BCELoss正样本权重
iou_t: 0.20  # IoU训练时的阈值
anchor_t: 4.0  # anchor的长宽比(长:宽 = 4:1)
# anchors: 3  # 每个输出层的anchors数量(0 to ignore)
#以下系数是数据增强系数,包括颜色空间和图片空间
fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015  # 色调 (fraction)
hsv_s: 0.7  # 饱和度 (fraction)
hsv_v: 0.4  # 亮度 (fraction)
degrees: 0.0  # 旋转角度 (+/- deg)
translate: 0.1  # 平移(+/- fraction)
scale: 0.5  # 图像缩放 (+/- gain)
shear: 0.0  # 图像剪切 (+/- deg)
perspective: 0.0  # 透明度 (+/- fraction), range 0-0.001
flipud: 0.0  # 进行上下翻转概率 (probability)
fliplr: 0.5  # 进行左右翻转概率 (probability)
mosaic: 1.0  # 进行Mosaic概率 (probability)
mixup: 0.0  # 进行图像混叠概率(即,多张图像重叠在一起) (probability)

训练超参

训练超参数包括:yaml文件的选择,和训练图片的大小,预训练,batch,epoch等。

可以直接在train.py的parser中修改,也可以在命令行执行时修改,如:$ python train.py –data coco.yaml –cfg yolov5s.yaml –weights ‘’ –batch-size 64

–data指定训练数据文件 –cfg设置网络结构的配置文件 –weihts加载预训练模型的路径

posted @ 2023-02-01 16:43  阿风小子  阅读(2347)  评论(0编辑  收藏  举报