Python爬虫案例

特性:
全自动爬取,每个城市建一张表
Mysql数据库
带有拟合曲线分析


2020.1.04
最近在做一个课程设计,关于爬取安居客房价信息的,本次用到的框架有

  • BeautifulSoup
  • xlwt,xlrd
  • requests
  • matplotlib
  • pandas
  • numpy

最终实现下图效果:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200107105806793.png?x-oss-
process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDA3NjkwNg==,size_16,color_FFFFFF,t_70)
**

使用说明:

请先注册安居客账户
之后先运行spider.py
随后运行draw.py

**

_爬虫代码 _
spider.py

    from bs4 import BeautifulSoup
    import requests
    import xlwt
    import time,random
    
    
    def getHouseList(url):
        house = []
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER'}
        # get从网页获取信息
        res = requests.get(url, headers=headers)
        # 解析内容
        soup = BeautifulSoup(res.content, 'html.parser')
        # 房源title
        housename_divs = soup.find_all('div', class_='house-title')
        for housename_div in housename_divs:
            housename_as = housename_div.find_all('a')
            for housename_a in housename_as:
                housename = []
                # 标题
                housename.append(SplitString(housename_a.get_text()))
                # 超链接
                housename.append(housename_a.get('href'))
                house.append(housename)
    ################################### 标签 ########################################
        tagcache=soup.find_all('div', class_='house-details')
        q=0
        for housetag_divs in tagcache:
            housetag_div = housetag_divs.find_all('div', class_='tags-bottom')
            for tagarrange in housetag_div:
                tag_div = tagarrange.find_all('span', class_='item-tags tag-others')
                cache=[]
                for i in range(len(tag_div)):
                    cache.append(tag_div[i].get_text())
            house[q].append("~~".join(cache))
            q=q+1
    
    ################################## 房屋信息 ######################################
        housecache_divs=soup.find_all('div', class_='house-details')
        i=0
        for huseinfo_divs in housecache_divs:
            # 房屋信息
            huseinfo_div = huseinfo_divs.find('div', class_='details-item')
            #info = [span.get_text() for span in huseinfo_div]
            info = huseinfo_div.get_text()
            infos = info.split('|')
            # 户型
            house[i].append(SplitString(infos[0]))
            # 平米
            house[i].append(infos[1])
            # 层数
            house[i].append(infos[2])
            # 年限
            house[i].append(SplitString(infos[3]))
            i=i+1
    ############################## 查询总价 ##########################################
        house_prices = soup.find_all('span', class_='price-det')
        for i in range(len(house_prices)):
            # 价格
            price = house_prices[i].get_text()
            house[i].append(price)
        unit_prices = soup.find_all('span', class_='unit-price')
        for i in range(len(unit_prices)):
            # 单价
            unitPrice = unit_prices[i].get_text()
            house[i].append(unitPrice)
        address = soup.find_all('span', class_='comm-address')
    ############################## 地址 ##############################################
        for i in range(len(address)):
            # 楼盘
            houseAddress = address[i].get_text()
            str=SplitString(houseAddress).split('-')
            house[i].append(str[0])
            # 区域
            house[i].append(str[1])
            # 所属商圈
            house[i].append(str[2])
            # 地址
            house[i].append(str[3])
        broker = soup.find_all('span', class_='broker-name broker-text')
        for i in range(len(broker)):
            # 联系人
            brokerName = broker[i].get_text()
            house[i].append(SplitString(brokerName))
        return house
    
    def SplitString(str):
        str = "-".join(str.split())
        str.replace('\r', '').replace('\t', '').replace('\n','')
        return str
    
    # 将房源信息写入excel文件
    def writeExcel(excelPath, houses , pages):
        workbook = xlwt.Workbook()
        # 获取第一个sheet页
        sheet = workbook.add_sheet('共'+format(pages)+'页')
        row0 = ['标题', '链接地址','特点','户型', '面积', '层数', '建造时间', '售价', '每平米单价','楼盘','区域','商圈','地址','出售人']
        for i in range(0, len(row0)):
            sheet.write(0, i, row0[i])
        for i in range(0, len(houses)):
            house = houses[i]
    #        print(house)
            for j in range(0, len(house)):
                sheet.write(i + 1, j, house[j])
        workbook.save(excelPath)
    
    # profile_directory=r'--user-data-dir=C:\Users\User\AppData\Local\Google\Chrome\User Data'
    # 主函数
    def RunSpider():
        data = []
        for i in range(1, 30):
            print('-----分隔符', i, '-------')
            if i == 1:
                url = 'https://shenzhen.anjuke.com/sale/?from=navigation'
            else:
                url = 'https://shenzhen.anjuke.com/sale/p' + str(i) + '/#filtersort'
            time.sleep(random.random() * 10)
            houses = getHouseList(url)
            data.extend(houses)
            writeExcel('d:/house.xls', data , i)
            time.sleep(random.random() * 10)
    

_数据读取写入分析代码 _
FliesWR.py

    import xlrd
    import xlwt
    import pandas as pd
    import numpy as np
    
    import datamining
    
    
    
    ########################### 读取指定行,指定列##################################
    def read_excel(path, row, column):
        workbook = xlrd.open_workbook(r'' + path)
        sheet = workbook.sheets()[0]
        nrows = sheet.nrows
        ncols = sheet.ncols
        cache = {}
        if row == 0:
            for i in range(nrows):
                if i == 0:
                    cache[0] = ''
                    continue
                str = sheet.row_values(i)[column]
                cache[i] = str
            return cache
        if column == 0:
            for i in range(ncols):
                str = sheet.row_values(row)[i]
                cache[i] = str
            return cache
    
    
    ########################## 字典查找 ############################################
    def select_cols(dict, columnName):
        match_data = {}
        for (key, value) in dict.items():
            if value.startswith(u'' + columnName):
                match_data[key] = value
        return list(match_data.keys())
    
    
    def get_rows_value(path, list, columnValue):
        key=''
        if columnValue==2:
            key = '~~'
        if columnValue==8:
            key = '元'
        workbook = xlrd.open_workbook(r'' + path)
        sheet = workbook.sheets()[0]
        rows_value = []
        for i in range(len(list)):
            row=list[i]
            str = sheet.row_values(row)[columnValue]
            s=str.split(key)
            rows_value.insert(i,s[0])
        return rows_value

_绘图 _
datamining.py

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    
    import FilesWR as fwr
    
    area=['宝安','南山','罗湖','福田','坪山','布吉','龙岗','盐田','大鹏新区','光明','龙华','深圳周边']
    def pre_data(columnName):
        path = 'D:\house.xls'
        dict = fwr.read_excel(path, 0, columnName)
        area_data = []
        for i in range(len(area)):
            result = fwr.get_rows_value(path, fwr.select_cols(dict, area[i]), 8)
            cc = list(map(int, result))
            area_data.append([area[i]])
            mean = np.mean(cc)
            #all_mean.insert(i,int(mean/1))
            #cache = float(mean / 10000)
            #mean_price = '%.2f' % cache
            min = np.min(list(map(int, result)))
            max = np.max(list(map(int, result)))
            area_data[i].append(int(mean))
            area_data[i].append(min)
            area_data[i].append(max)
        return area_data
    def data_draw(list):
        all_mean = {}
        for i in range(len(area)):
            all_mean.setdefault(area[i],list[i][1])
        print(all_mean)
        return all_mean
    
    
    def draw(y):
        plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
        plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
    
        group_data = list(y.values())
        group_names = list(y.keys())
        group_mean = np.mean(group_data)
    
        fig, ax = plt.subplots()
        ax.barh(group_names, group_data)
    
        ax.axvline(group_mean, ls='--', color='r')
    
        ax.title.set(y=1.05)
    
    
        for group in range(len(area)):
            ax.text(y.get(area[group])+100, group, y.get(area[group]) , fontsize=12,
                    verticalalignment="center",color='green')
    
        ax.set(xlim=[0, 10000], xlabel='各地区房价均值', ylabel='区域',
               title='深圳房价均价区域统计')
        ax.set_xticks([0, 10e3 , 20e3 , 30e3 , 40e3, 50e3 , 60e3 , 70e3 ,80e3, 90e3 ,100e3])
    
    
        plt.show()
    
    
    if __name__ == '__main__':
        #formatter = FuncFormatter(currency)
        draw(data_draw(pre_data(10)))
posted @ 2022-12-30 10:05  阿风小子  阅读(59)  评论(0编辑  收藏  举报