[洛谷]P1505 [国家集训队]旅游

题目链接:

传送门

题目分析:

树剖板,支持单点修改,区间取反,区间求最大值/最小值/和

区间取反取两次等于没取,维护一个\(rev\ tag\),每次打标记用\(xor\)打,记录是否需要翻转,\(push\_down\)里判一下如果要取反就\(-=2 * sum(p)\),容易发现新最大值是原最小值的相反数,最小值同理

细节挺多的,看代码

代码:

#include <bits/stdc++.h>
#define N 2 * (200000 + 5)
#define int long long
#define INF (1000000000 + 7)
using namespace std;
inline int read() {
    int cnt = 0, f = 1; char c = getchar();
    while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
    while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
    return cnt * f;
}
int nxt[N], first[N], to[N], w[N], tot;
void Add(int x, int y, int z) {
    nxt[++tot] = first[x];
    first[x] = tot;
    to[tot] = y;
    w[tot] = z;
}
int son[N], dep[N], top[N], siz[N], father[N], id[N], num[N], idx, a[N];
void dfs1(int cur, int fa) {
    father[cur] = fa, siz[cur] = 1, dep[cur] = dep[fa] + 1;
    for (register int i = first[cur]; i; i = nxt[i]) {
        int v = to[i];
        if (v != fa) {
            a[v] = w[i];
            dfs1(v, cur);
            siz[cur] += siz[v];
            if (siz[son[cur]] < siz[v]) son[cur] = v;
        }
    }
}

void dfs2(int cur, int tp) {
    top[cur] = tp, num[cur] = ++idx, id[idx] = cur;
    if (son[cur]) dfs2(son[cur], tp);
    for (register int i = first[cur]; i; i = nxt[i]) {
        int v = to[i];
        if (!num[v]) dfs2(v, v);
    }
}

struct node {
    int l, r, Min, Max, sum, add;
    bool rev;
    #define l(p) tree[p].l
    #define r(p) tree[p].r
    #define Min(p) tree[p].Min
    #define Max(p) tree[p].Max
    #define sum(p) tree[p].sum
    #define rev(p) tree[p].rev
}tree[N << 2];

void push_up(int p) {
    sum(p) = sum(p << 1) + sum(p << 1 | 1);
    Max(p) = max(Max(p << 1), Max(p << 1 | 1));
    Min(p) = min(Min(p << 1), Min(p << 1 | 1));
}

void push_up_rev(int p) {
    int gmax = Max(p), gmin = Min(p);
    rev(p) ^= 1, sum(p) = -sum(p), Max(p) = -gmin, Min(p) = -gmax;
}

void push_down(int p) {
    if (rev(p)) {push_up_rev(p << 1), push_up_rev(p << 1 | 1), rev(p) ^= 1;}
}

void build_tree(int p, int l, int r) {
    l(p) = l, r(p) = r;
    if (l == r) {
        sum(p) = Max(p) = Min(p) = a[id[l]];
        return;
    }
    int mid = (l + r) >> 1;
    build_tree(p << 1, l, mid);
    build_tree(p << 1 | 1, mid + 1, r);
    push_up(p);
}

void modify(int p, int x, int d) {
    if (l(p) == r(p)) {
        rev(p) = 0, sum(p) = d, Max(p) = d, Min(p) = d;
        return;
    }
    push_down(p);
    int mid = (l(p) + r(p)) >> 1;
    if (x <= mid) modify(p << 1, x, d);
    else modify(p << 1 | 1, x, d);
    push_up(p);
}

void Reverse(int p, int l, int r) {
    if (l <= l(p) && r >= r(p)) {push_up_rev(p); return;}
    push_down(p);
    int mid = (l(p) + r(p)) >> 1;
    if (l <= mid) Reverse(p << 1, l, r);
    if (r > mid) Reverse(p << 1 | 1, l, r);
    push_up(p);
}

int query_sum(int p, int l, int r) {
    if (l <= l(p) && r >= r(p)) return sum(p);
    push_down(p);
    int mid = (l(p) + r(p)) >> 1;
    long long val = 0;
    if (l <= mid) val += query_sum(p << 1, l, r);
    if (r > mid) val += query_sum(p << 1 | 1, l, r);
    return val;
}

int query_max(int p, int l, int r) {
    if (l <= l(p) && r >= r(p)) return Max(p);
    push_down(p);
    int mid = (l(p) + r(p)) >> 1;
    long long val = -INF;
    if (l <= mid) val = max(val, query_max(p << 1, l, r));
    if (r > mid) val = max(val, query_max(p << 1 | 1, l, r));
    return val;
}

int query_min(int p, int l, int r) {
    if (l <= l(p) && r >= r(p)) return Min(p);
    push_down(p);
    int mid = (l(p) + r(p)) >> 1;
    long long val = INF;
    if (l <= mid) val = min(val, query_min(p << 1, l, r));
    if (r > mid) val = min(val, query_min(p << 1 | 1, l, r));
    return val;
}

void REVERSE (int u, int v) {
    while (top[u] != top[v]) {
        if (dep[top[u]] < dep[top[v]]) swap(u, v);
        Reverse(1, num[top[u]], num[u]);
        u = father[top[u]];
    }
    if (dep[u] < dep[v]) swap(u, v);
    Reverse(1, num[v] + 1, num[u]);
}

int Query_Sum (int u, int v) {
    long long val = 0;
    while (top[u] != top[v]) {
        if (dep[top[u]] < dep[top[v]]) swap(u, v);
        val += query_sum(1, num[top[u]], num[u]);
        u = father[top[u]];
    }
    if (dep[u] < dep[v]) swap(u, v);
    val += query_sum(1, num[v] + 1, num[u]);
    return val;
}

int Query_Max (int u, int v) {
    long long val = -INF;
    while (top[u] != top[v]) {
        if (dep[top[u]] < dep[top[v]]) swap(u, v);
        val = max(val, query_max(1, num[top[u]], num[u]));
        u = father[top[u]];
    }
    if (dep[u] < dep[v]) swap(u, v);
    val = max(val, query_max(1, num[v] + 1, num[u]));
    return val;
}

int Query_Min (int u, int v) {
    long long val = INF;
    while (top[u] != top[v]) {
        if (dep[top[u]] < dep[top[v]]) swap(u, v);
        val = min(val, query_min(1, num[top[u]], num[u]));
        u = father[top[u]];
    }
    if (dep[u] < dep[v]) swap(u, v);
    val = min(val, query_min(1, num[v] + 1, num[u]));
    return val;
}
int n, m, u, v, x, y, z;
char ope[10];
void solve() {
    n = read();
    for (register int i = 1; i < n; i++) {
        x = read(); y = read(); z = read();
        Add(x + 1, y + 1, z); Add(y + 1, x + 1, z);
    }
    dfs1(1, 0); dfs2(1, 1); build_tree(1, 1, n);
    m = read();
    for (register int i = 1; i <= m; i++) {
        scanf("%s", ope + 1);
        x = read(); y = read();
        if (ope[1] == 'C') {
            u = to[2 * x - 1], v = to[2 * x];
            if (dep[u] < dep[v]) swap(u, v);
            modify(1, num[u], y);
        }
        if (ope[1] == 'N') {
            REVERSE (x + 1, y + 1);
        }
        if (ope[1] == 'S') {
            printf("%lld\n", Query_Sum(x + 1, y + 1));
        }
        if (ope[1] == 'M') {
            if (ope[2] == 'A') printf("%lld\n", Query_Max(x + 1, y + 1));
            else printf("%lld\n", Query_Min(x + 1, y + 1));
        }
    }
}

signed main() {
//	freopen("1.in","r",stdin);
    solve();
    return 0;
}
posted @ 2019-07-08 22:57  kma_093  阅读(202)  评论(0编辑  收藏  举报