[洛谷P3950] 部落冲突
题目链接:##
题目分析:##
树剖。
考虑把边权下放到点上进行染色,连通是0,不连通是1,然后有两种处理思路:
- 维护区间颜色段总数(参考另一篇题解:染色),每次查询判断整段内是否只有一种颜色,若是,判断是否是全连通(可能是全不连通)
- 维护区间最大值,若是0说明是全连通,若是1说明有不连通边
和染色一样,注意跳过LCA
代码:##
#include<bits/stdc++.h>
#define int long long
#define N (1000000 + 5)
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c;
c = getchar();
while (!isdigit(c)) {
if (c == '-') f = -f;
c = getchar();
}
while (isdigit(c)) {
cnt = (cnt << 3) + (cnt << 1) + c - '0';
c = getchar();
}
return cnt * f;
}
int nxt[N], first[N], to[N], tot;
void Add(int x, int y) {
nxt[++tot] = first[x];
first[x] = tot;
to[tot] = y;
}
int father[N], dep[N], siz[N], num[N], son[N], top[N], idx;
void dfs1(int cur, int fa) {
father[cur] = fa, siz[cur] = 1, dep[cur] = dep[fa] + 1;
for (register int i = first[cur]; i; i = nxt[i]) {
int v = to[i];
if (v != fa) {
dfs1(v, cur);
siz[cur] += siz[v];
if (siz[son[cur]] < siz[v]) son[cur] = v;
}
}
}
void dfs2(int cur, int tp) {
num[cur] = ++idx, top[cur] = tp;
if (son[cur]) dfs2(son[cur], tp);
for (register int i = first[cur]; i; i = nxt[i]) {
int v = to[i];
if (!num[v]) dfs2(v, v);
}
}
struct node {
int l, r;
int dat;
int lc;
int rc;
#define l(p) tree[p].l
#define r(p) tree[p].r
#define dat(p) tree[p].dat
#define lc(p) tree[p].lc
#define rc(p) tree[p].rc
} tree[N * 4];
int Lc, Rc;
void push_up(int p);
void build_tree(int p, int l, int r) {
l(p) = l, r(p) = r;
if (l(p) == r(p)) {
dat(p) = 1;
lc(p) = rc(p) = 0;
return;
}
int mid = (l + r) >> 1;
build_tree(p << 1, l, mid);
build_tree(p << 1 | 1, mid + 1, r);
push_up(p);
}
void push_up(int p) {
lc(p) = lc(p << 1), rc(p) = rc(p << 1 | 1);
dat(p) = dat(p << 1) + dat(p << 1 | 1);
if (rc(p << 1) == lc(p << 1 | 1)) --dat(p);
}
void modify(int p, int x) {
if (l(p) == r(p)) {
lc(p) = 1 - lc(p);
rc(p) = lc(p);
return;
}
int mid = (l(p) + r(p)) >> 1;
if (x <= mid) modify(p << 1, x);
if (x > mid) modify(p << 1 | 1, x);
push_up(p);
}
int query(int p, int l, int r) {
if (l > r) return 0;
if (l(p) == l) Lc = lc(p);
if (r(p) == r) Rc = rc(p);
if (l <= l(p) && r >= r(p)) {
return dat(p);
}
long long val = 0;
int mid = (l(p) + r(p)) >> 1;
if (l > mid) val += query(p << 1 | 1, l, r);
else if (r <= mid) val += query(p << 1, l, r);
else {
if (rc(p << 1) == lc(p << 1 | 1))
val += query(p << 1, l, r) + query(p << 1 | 1, l, r) - 1;
else val += query(p << 1, l, r) + query(p << 1 | 1, l, r);
}
return val;
}
bool chain_query(int u, int v) {
int res = 0;
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
res = query(1, num[top[u]], num[u]);
if (res > 1 || (res == 1 && Lc == 1)) return false;
u = father[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
res = query(1, num[v] + 1, num[u]);
if (res > 1 || (res == 1 && Lc == 1)) return false;
return true;
}
int m, n, x, y;
int war[N], id;
char opr;
void solve() {
n = read(), m = read();
for (register int i = 1; i < n; i++) {
x = read(), y = read();
Add(x, y); Add(y, x);
}
build_tree(1, 1, n);
dfs1(1, 0); dfs2(1, 1);
dat(1) = 0;
for (register int i = 1; i <= m; i++) {
scanf("%s", &opr);
if (opr == 'Q') {
x = read(); y = read();
if (chain_query(x, y)) printf("Yes\n");
else printf("No\n");
}
if (opr == 'C') {
x = read(); y = read();
if (dep[x] < dep[y]) swap(x, y);
war[++id] = x;
modify(1, num[x]);
}
if (opr == 'U') {
x = read();
modify(1, num[war[x]]);
}
}
}
signed main() {
solve();
return 0;
}