51Nod 1175 区间中第K大的数 (可持久化线段树+离散)

基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题
 
一个长度为N的整数序列,编号0 - N - 1。进行Q次查询,查询编号i至j的所有数中,第K大的数是多少。
例如: 1 7 6 3 1。i = 1, j = 3,k = 2,对应的数为7 6 3,第2大的数为6。
 
Input
第1行:1个数N,表示序列的长度。(2 <= N <= 50000)
第2 - N + 1行:每行1个数,对应序列中的元素。(0 <= S[i] <= 10^9)
第N + 2行:1个数Q,表示查询的数量。(2 <= Q <= 50000)
第N + 3 - N + Q + 2行:每行3个数,对应查询的起始编号i和结束编号j,以及k。(0 <= i <= j <= N - 1,1 <= k <= j - i + 1)
Output
共Q行,对应每一个查询区间中第K大的数。
Input示例
5
1
7
6
3
1
3
0 1 1
1 3 2
3 4 2
Output示例
7
6
1

思路:
可持久化线段树入门题。离散化处理下就好了
其实可持久化线段树跟之前写过的线段树动态开点是差不多的,都是为了维护状态,需要开很多棵线段树来维护。
可持久化线段树维护的是每一次修改后的状态。比如这道题我们就可以利用他的能够查询历史版本的特性来解决

ps:之前有点错误,改正了一遍

实现代码:
#include<bits/stdc++.h>
using namespace std;
const int M = 2e6+10;
int idx;  //记录目前一共建过多少节点
int sum[M],ls[M],rs[M]; //区间和,左儿子,右儿子
int rt[M]; //每次修改对应的根节点编号
int a[M],ans[M],lst[M],cnt,num[M],n,m;

struct node{
    int id,l,r,x;
    bool operator < (const node &b) const {
        return r < b.r;
    }
}q[M];

void build(int &k,int l,int r){
    //k传的是地址,这样在一层函数中修改k就可以直接修改上一层的lson和rson了
    k = ++idx; //为新节点标号
    if(l == r) return ;  //一定要在创建新节点之后再return
    int m = (l + r) >> 1;
    build(ls[k],l,m);
    build(rs[k],m+1,r);
}

void change(int old,int &k,int l,int r,int p,int x){
    k = ++idx; //修改的时候要创建新点
    ls[k] = ls[old]; rs[k] = rs[old];
    sum[k] = sum[old] + x; //先把原来节点的信息复制过来,顺便修改区间和
    if(l == r) return ;  //先建点后return
    int m = (l + r) >> 1;
    if(p <= m) change(ls[old],ls[k],l,m,p,x);
    else change(rs[old],rs[k],m+1,r,p,x);
}


int query(int k,int old,int l,int r,int x){
    if(l == r) return l;
    int m = (l + r) >> 1;
    int ret = sum[rs[k]] - sum[rs[old]];
    if(ret >= x)
        return query(rs[k],rs[old],m+1,r,x);
    else
        return query(ls[k],ls[old],l,m,x-ret);
}

int find(int x){
    return lower_bound(num+1,num + cnt + 1, x) - num;
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);  cout.tie(0);
    cin>>n;
    for(int i = 1;i <= n;i ++){
        cin>>lst[i];a[i] = lst[i];
    }
    sort(lst+1,lst+n+1);
    for(int i = 1;i <= n;i ++){
        if(i == 1||lst[i] != lst[i-1])
            num[++cnt] = lst[i];
    }
    build(rt[0],1,cnt);
    cin>>m;
    for(int i = 1;i <= m;i ++){
        q[i].id = i;
        cin>>q[i].l; q[i].l ++;
        cin>>q[i].r; q[i].r ++;
        cin>>q[i].x;
    }
    sort(q+1,q+m+1);
    for(int i = 1,j = 1;i <= n;i ++){
        change(rt[i-1],rt[i],1,cnt,find(a[i]),1);
        while(q[j].r == i){
            ans[q[j].id] = query(rt[i],rt[q[j].l-1],1,cnt,q[j].x);
            j++;
        }
    }
    for(int i = 1;i <= m;i ++){
        printf("%d\n",num[ans[i]]);
    }
    return 0;
}

 

 

posted @ 2018-05-07 17:04  冥想选手  阅读(243)  评论(0编辑  收藏  举报