Ubuntu 20.04 安装 CUDA Toolkit 的三种方式

无论采用哪一种方式,首先都需要更新 Ubuntu 软件源和升级到最新版本的软件包。由于国内从 Ubuntu 官方软件源下载速度比较慢,所以,建议采用国内 Ubuntu 镜像源,比如阿里 Ubuntu 软件源清华大学 Ubuntu 软件源。具体的配置方式是修改配置文件 /etc/apt/sources.list,将其中的 archive.ubuntu.com 替换为 mirrors.alibaba.com 或 mirrors.tuna.tsinghua.edu.cn 。也可以在图形界面应用 "Software & Update" 中,修改 Ubuntu Software 标签页中的 Download from 后的软件源地址。

配置软件源后,采用如下命令进行软件源的更新和软件包的升级。

sudo apt update
sudo apt upgrade

下面介绍在 Ubuntu 20.04 长期支持版本中,安装 CUDA Tools 的三种方式:

方式一:采用 Ubuntu 软件源中的 CUDA Tools 软件包

这种方式安装简单,但安装的 CUDA Toolkit 版本往往不是最新版本。查询目前可安装的 CUDA Toolkit 版本的命令,如下所示

apt search nvidia-cuda-toolkit

具体安装命令如下:

sudo apt install nvidia-cuda-toolkit

方式二:先采用图形界面安装 CUDA 驱动,再安装从 NVIDIA 官网下载的 CUDA Toolkit 安装包

1)图形界面安装 CUDA 驱动

在所有应用中,选择 “Software & Update” 应用,在标签页 "Additional Drivers" 中选择 “nvidia-driver-450-server”,如下图所示:

选择后,单击 “Apply Changes” 按钮,这样就更新并切换到所选驱动。

快捷键 Ctrl + Alt + T 打开 Terminal ,运行 nvidia-smi 命令以验证切换到 CUDA 驱动是否成功。我尝试过 nvidia-driver-460 这个版本,但没有成功,因此使用稍低的版本 nvidia-driver-450-server

2)下载并安装 CUDA Toolkit

本机安装的 CUDA Toolkit 版本为 11.0.3,与上一步安装 CUDA 驱动 450 兼容(可以参考下载文件名的尾缀), 具体下载命令,如下

wget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_450.51.06_linux.run

安装命令,如下

sudo sh cuda_11.0.3_450.51.06_linux.run 

需要注意,安装时,选择不安装 CUDA 驱动,安装记录如下:

===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-11.0/
Samples:  Installed in /home/klchang/, but missing recommended libraries

Please make sure that
 -   PATH includes /usr/local/cuda-11.0/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-11.0/lib64, or, add /usr/local/cuda-11.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-11.0/bin
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least .00 is required for CUDA 11.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run --silent --driver

Logfile is /var/log/cuda-installer.log

安装结束后,添加环境变量到 ~/.bashrc 文件的末尾,具体添加内容如下:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

保存后退出。

在 Terminal 中,激活环境变量命令为 source ~/.bashrc

测试 CUDA Toolkit 。 通过编译自带 Samples并执行, 以验证是否安装成功。具体命令如下所示:

cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery

如果安装成功,则输出类似于如下信息:

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce RTX 2070 with Max-Q Design"
  CUDA Driver Version / Runtime Version          11.0 / 11.0
  CUDA Capability Major/Minor version number:    7.5
  Total amount of global memory:                 7982 MBytes (8370061312 bytes)
  (36) Multiprocessors, ( 64) CUDA Cores/MP:     2304 CUDA Cores
  GPU Max Clock rate:                            1125 MHz (1.12 GHz)
  Memory Clock rate:                             5501 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 4194304 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1024
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 3 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Managed Memory:                Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.0, CUDA Runtime Version = 11.0, NumDevs = 1
Result = PASS

3)下载并安装 cuDNN

从 NVIDIA 官方网址  https://developer.nvidia.com/rdp/cudnn-download 下载 cudnn-11.0-linux-x64-v8.0.5.39.tgz 。

解压压缩包,并把相应的文件,复制到指定目录即可。如下所示:

tar zxvf cudnn-11.0-linux-x64-v8.0.5.39.tgz 
sudo cp cuda/include/cudnn* /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn* /usr/local/cuda/lib64/libcudnn*

方式三:CUDA 驱动和 CUDA Toolkit 都采用命令行方式安装

首先,需要卸载原有的 NVIDIA 驱动并禁用自带的驱动 nouveau;然后,重启电脑,使用 lsmod | grep nouveau 命令检查禁用自带驱动是否成功;如果禁用成功,则安装从 NVIDIA 官方地址下载的 CUDA  Toolkit。其步骤则与方式二相同,差别在于这次需要安装 CUDA 驱动 。更多内容,参见 How to Install CUDA ToolKit 11.0, and Nvidia Display Driver on Ubuntu 20.04

问题与解答

问题 1,sudo apt update 时,出现有锁无法更新的情况

$ sudo apt update

Reading package lists... Done
E: Could not get lock /var/lib/apt/lists/lock. It is held by process 1379 (packagekitd)
N: Be aware that removing the lock file is not a solution and may break your system.
E: Unable to lock directory /var/lib/apt/lists/

解决方法:

停用 packagekitd,并禁止开机启动,具体命令如下:

systemctl stop packagekitd
systemcrl disable packagekit.service

参考资料 

[1] How to Install cuda on Ubuntu 20.04. https://linuxconfig.org/how-to-install-cuda-on-ubuntu-20-04-focal-fossa-linux

[2] Ubuntu16.04安装NVIDIA驱动、实现GPU加速. https://blog.csdn.net/zhang970187013/article/details/81012845

 

posted @ 2021-01-31 18:04  klchang  阅读(55676)  评论(0编辑  收藏  举报