深入理解L1、L2正则化
阅读目录
过节福利,我们来深入理解下L1与L2正则化。
1 正则化的概念
- 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称。也就是目标函数变成了原始损失函数+额外项,常用的额外项一般有两种,英文称作ℓ1−normℓ1−norm和ℓ2−normℓ2−norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数(实际是L2范数的平方)。
-
L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓惩罚是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。
-
线性回归L1正则化损失函数:
minw[∑i=1N(wTxi−yi)2+λ∥w∥1]........(1)minw[∑i=1N(wTxi−yi)2+λ‖w‖1]........(1) -
线性回归L2正则化损失函数:
minw[∑i=1N(wTxi−yi)2+λ∥w∥22]........(2)minw[∑i=1N(wTxi−yi)2+λ‖w‖22]........(2) - 公式(1)(2)中ww表示特征的系数(xx的参数),可以看到正则化项是对系数做了限制。L1正则化和L2正则化的说明如下:
- L1正则化是指权值向量ww中各个元素的绝对值之和,通常表示为∥w∥1‖w‖1。
- L2正则化是指权值向量ww中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为∥w∥22‖w‖22。
- 一般都会在正则化项之前添加一个系数λλ。Python中用αα表示,这个系数需要用户指定(也就是我们要调的超参)。
2 正则化的作用
- L1正则化可以使得参数稀疏化,即得到的参数是一个稀疏矩阵,可以用于特征选择。
- 稀疏性,说白了就是模型的很多参数是0。通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,很多参数是0,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,即使去掉对模型也没有什么影响,此时我们就可以只关注系数是非零值的特征。这相当于对模型进行了一次特征选择,只留下一些比较重要的特征,提高模型的泛化能力,降低过拟合的可能。
- L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合。
3 L1正则化与稀疏性
- 事实上,”带正则项”和“带约束条件”是等价的。
-
为了约束w的可能取值空间从而防止过拟合,我们为该最优化问题加上一个约束,就是w的L1范数不能大于m:
{min∑Ni=1(wTxi−yi)2s.t.∥w∥1⩽m.........(3){min∑i=1N(wTxi−yi)2s.t.‖w‖1⩽m.........(3) - 问题转化成了带约束条件的凸优化问题,写出拉格朗日函数:
∑i=1N(wTxi−yi)2+λ(∥w∥1−m)........(4)∑i=1N(wTxi−yi)2+λ(‖w‖1−m)........(4) -
设W∗W∗和λ∗λ∗是原问题的最优解,则根据KKTKKT条件得:
{0=∇w[∑Ni=1(WT∗xi−yi)2+λ∗(∥w∥1−m)]0⩽λ∗.........(5){0=∇w[∑i=1N(W∗Txi−yi)2+λ∗(‖w‖1−m)]0⩽λ∗.........(5) - 仔细看上面第一个式子,与公式(1)其实是等价的,等价于(3)式。
- 设L1正则化损失函数:J=J0+λ∑w|w|J=J0+λ∑w|w|,其中J0=∑Ni=1(wTxi−yi)2J0=∑i=1N(wTxi−yi)2是原始损失函数,加号后面的一项是L1正则化项,λλ是正则化系数。
- 注意到L1正则化是权值的绝对值之和,JJ是带有绝对值符号的函数,因此JJ是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数J0J0后添加L1正则化项时,相当于对J0J0做了一个约束。令L=λ∑w|w|L=λ∑w|w|,则J=J0+LJ=J0+L,此时我们的任务变成在LL约束下求出J0J0取最小值的解。
- 考虑二维的情况,即只有两个权值w1w1和w2w2,此时L=|w1|+|w2|L=|w1|+|w2|对于梯度下降法,求解J0J0的过程可以画出等值线,同时L1正则化的函数LL也可以在w1w1、w2w2的二维平面上画出来。如下图:
- 上图中等值线是J0J0的等值线,黑色方形是LL函数的图形。在图中,当J0J0等值线与LL图形首次相交的地方就是最优解。上图中J0J0与LL在LL的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是(w1,w2)=(0,w2)(w1,w2)=(0,w2)。可以直观想象,因为LL函数有很多突出的角(二维情况下四个,多维情况下更多),J0J0与这些角接触的机率会远大于与LL其它部位接触的机率,而在这些角上,会有很多权值等于00,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。
-
而正则化前面的系数λλ,可以控制LL图形的大小。λλ越小,LL的图形越大(上图中的黑色方框);λλ 越大,LL的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值(w1,w2)=(0,w2)(w1,w2)=(0,w2)中的w2w2可以取到很小的值。
- 同理,又L2正则化损失函数:J=J0+λ∑ww2J=J0+λ∑ww2,同样可画出其在二维平面的图像,如下:
-
二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0J0与LL相交时使得w1w1或w2w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。
4 L2正则化为什么能防止过拟合
- 拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是抗扰动能力强。
- 为什么L2正则化可以获得值很小的参数?
- (1) 以线性回归中的梯度下降法为例。假设要求的参数为θθ,hθ(x)hθ(x)是我们的假设函数,那么线性回归的代价函数如下:
Jθ=12n∑i=1n(hθ(x(i))−y(i))2........(6)Jθ=12n∑i=1n(hθ(x(i))−y(i))2........(6) - (2)在梯度下降中θθ的迭代公式为:
θj=θj−α1n∑i=1n(hθ(x(i))−y(i))x(i)j........(7)θj=θj−α1n∑i=1n(hθ(x(i))−y(i))xj(i)........(7) - (3) 其中αα是learning rate。 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式为:
θj=θj(1−αλn)−α1n∑i=1n(hθ(x(i))−y(i))x(i)j........(8)θj=θj(1−αλn)−α1n∑i=1n(hθ(x(i))−y(i))xj(i)........(8) - 其中λλ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,θjθj都要先乘以一个小于1的因子,从而使得θjθj不断减小,因此总得来看,θθ是不断减小的。
最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。
5 正则化项的参数选择
- L1、L2的参数λλ如何选择好?
- 以L2正则化参数为例:从公式(8)可以看到,λ越大,θjθj衰减得越快。另一个理解可以参考L2求解图, λλ越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小;当然也不是越大越好,太大容易引起欠拟合。
- 经验
从0开始,逐渐增大λλ。在训练集上学习到参数,然后在测试集上验证误差。反复进行这个过程,直到测试集上的误差最小。一般的说,随着λλ从0开始增大,测试集的误分类率应该是先减小后增大,交叉验证的目的,就是为了找到误分类率最小的那个位置。建议一开始将正则项系数λ设置为0,先确定一个比较好的learning rate。然后固定该learning rate,给λλ一个值(比如1.0),然后根据validation accuracy,将λ增大或者减小10倍,增减10倍是粗调节,当你确定了λλ的合适的数量级后,比如λ=0.01λ=0.01,再进一步地细调节,比如调节为0.02,0.03,0.009之类。