「CTSC 2011」幸福路径
[「CTSC 2011」幸福路径
蚂蚁是可以无限走下去的,但是题目对于精度是有限定的,只要满足精度就行了.
\({(1-1e-6)}^{2^{25}}=2.6e-15\)
考虑使用倍增的思想.
定义\(dp[x][y][t]\)为从\(x\)点出发,走\(2^t\)步,到达\(y\)所得到的最大权值.
dp转移:\(dp[x][y][t]=max(dp[x][k][t-1]+p^{2^{t-1}} dp[k][y][t-1])\)(\(k \subset [1,n]\)).
一次转移复杂度为\(o(n^3)\).
总复杂度\(o(n^3*K)\),\(K \leq 25\).
#include<bits/stdc++.h>
#define rep(q,a,b) for(int q=a,q##_end_=b;q<=q##_end_;++q)
#define dep(q,a,b) for(int q=a,q##_end_=b;q>=q##_end_;--q)
#define mem(a,b) memset(a,b,sizeof a )
#define debug(a) cerr<<#a<<' '<<a<<"___"<<endl
using namespace std;
void in(int &r) {
static char c;
r=0;
while(c=getchar(),!isdigit(c));
do r=(r<<1)+(r<<3)+(c^48);
while(c=getchar(),isdigit(c));
}
bool cur1;
const int mn=105;
const int mm=1005;
int n,m,cnt1,s;
double lp,p;
double val[mn],dp[mn][mn][2];
bool cur2;
int main() {
// cerr<<(&cur1-&cur2)/1024.0/1024<<endl;
freopen("path.in","r",stdin);
freopen("path.out","w",stdout);
int st;
scanf("%d%d",&n,&m);
rep(q,1,n)scanf("%lf",&val[q]);
scanf("%d%lf",&st,&p);
int a,b;
bool ok=1;
rep(q,1,n)rep(w,1,n)dp[q][w][ok]=-1e9;
rep(q,1,n)dp[q][q][ok]=0;
double Mx=0;
rep(q,1,m) {
scanf("%d%d",&a,&b);
dp[a][b][ok]=val[b]*p;
Mx=max(Mx,dp[a][b][ok]);
}
for(int tim=1;tim<=25;++tim){
if(p*Mx<1e-3)break;
ok=!ok;
rep(q,1,n)rep(w,1,n)dp[q][w][ok]=-1e9;
rep(q,1,n)dp[q][q][ok]=0;
rep(k,1,n)rep(q,1,n)rep(w,1,n)dp[q][w][ok]=max(dp[q][w][ok],dp[q][k][!ok]+dp[k][w][!ok]*p);
rep(q,1,n)rep(w,1,n)Mx=max(Mx,dp[q][w][ok]);
p*=p;
}
double ans=0;
rep(q,1,n)ans=max(ans,dp[st][q][ok]);
printf("%.1lf\n",val[st]+ans);
return 0;
}