「NOI十联测」奥义商店
「NOI十联测」奥义商店
若lzz想花费最少的钱,那么显然要选择数目较少的颜色。
先考虑暴力的写法。
每次向两边统计,每个物品要求被买的概率可以由上一个物品推出。
now=1;//now 被买概率 M 选择的颜色的数目
for(int q=1;st+d*q<=n&&q<=cnt[1];++q){
now*=(M-q+1.0)/(n-1-q+1);//当前点被涂上选择的颜色的概率 * 先前的物品也涂上选择的颜色
ans+=val[st+d*q]*now;
}
now=1;
for(int q=1;st-d*q>0&&q<=cnt[1];++q){//同上
now*=(M-q+1.0)/(n-1-q+1);
ans+=val[st-d*q]*now;
}
观察到,当\(2 \leq t\),那么\(M \leq {n \over 2}\),而此时now的衰减极快,大约可以在\(log_2(10^8)\)次数内不再对答案的有贡献(精度问题)。因此可以做到查询复杂度\(o(log)\),修改复杂度\(o(1)\)。
当\(t=1\),颜色只有一种,故只要是在等差序列上的点,都要被选中。
对于\(\sqrt n \leq d\)的情况,可以暴力计算,询问复杂度\(o(\sqrt n)\),修改复杂度\(o(1 )\)。
对于\(\sqrt n \geq d\)的情况,可以对每个d和每个起始点都预处理一遍答案,询问复杂度\(o(1)\),修改复杂度\(o(\sqrt n )\)。
故可以得到时间和空间都为\(o(n \sqrt n)\)的算法。
#include<bits/stdc++.h>
#define rep(q,a,b) for(int q=a,q##_end_=b;q<=q##_end_;++q)
#define dep(q,a,b) for(int q=a,q##_end_=b;q>=q##_end_;--q)
#define mem(a,b) memset(a,b,sizeof a )
#define debug(a) cerr<<#a<<' '<<a<<"___"<<endl
using namespace std;
void in(int &r) {
static char c;
r=0;
while(c=getchar(),c<48);
do r=(r<<1)+(r<<3)+(c^48);
while(c=getchar(),c>47);
}
bool cur1;
const int mn=100005;
int n,m,val[mn];
int sq,sum[330][330];
void get1(int st,int d){
if(d<=sq)printf("%.4lf\n",(double)sum[d][st%d]);
else{
int ans=val[st];
for(int q=1;st+d*q<=n;++q)ans+=val[st+d*q];
for(int q=1;st-d*q>0;++q)ans+=val[st-d*q];
printf("%.4lf\n",(double)ans);
}
}
void get(int col,int st,int d,int M){
double ans=val[st],now=1;
for(int q=1;st+d*q<=n&&q<=M;++q){
if(now<1e-10)break;
now*=(M-q+1.0)/(n-1-q+1);
ans+=val[st+d*q]*now;
}
now=1;
for(int q=1;st-d*q>0&&q<=M;++q){
if(now<1e-10)break;
now*=(M-q+1.0)/(n-1-q+1);
ans+=val[st-d*q]*now;
}
printf("%.4lf\n",ans);
}
void change(int x,int v){
int d=v-val[x];
val[x]=v;
rep(w,1,sq)sum[w][x%w]+=d;
}
bool cur2;
int main(){
// cerr<<(&cur1-&cur2)/1024.0/1024.0;
freopen("lzz.in","r",stdin);
freopen("lzz.out","w",stdout);
in(n),in(m);
rep(q,1,n)in(val[q]);
sq=sqrt(n)+1;
rep(q,1,sq)rep(w,1,n)sum[q][w%q]+=val[w];
int a,b,c,d;
while(m--){
in(a),in(b),in(c);
if(a==1)change(b,c);
else{
in(d);
int M=1e9;
rep(q,1,b)in(a),M=min(a,M);
if(b==1)get1(c,d);
else get(b,c,d,M);
}
}
return 0;
}