集技术与颜值于一身

日就月将,学有缉熙于光明

导航

【慕课网实战】Spark Streaming实时流处理项目实战笔记十一之铭文升级版

铭文一级:

第8章 Spark Streaming进阶与案例实战

黑名单过滤

访问日志 ==> DStream
20180808,zs
20180808,ls
20180808,ww
==> (zs: 20180808,zs)(ls: 20180808,ls)(ww: 20180808,ww)

黑名单列表 ==> RDD
zs
ls
==>(zs: true)(ls: true)

 

==> 20180808,ww

leftjoin
(zs: [<20180808,zs>, <true>]) x
(ls: [<20180808,ls>, <true>]) x
(ww: [<20180808,ww>, <false>]) ==> tuple 1

 

第9章 Spark Streaming整合Flume

Push方式整合

Flume Agent的编写: flume_push_streaming.conf

simple-agent.sources = netcat-source
simple-agent.sinks = avro-sink
simple-agent.channels = memory-channel

simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind = hadoop000
simple-agent.sources.netcat-source.port = 44444

simple-agent.sinks.avro-sink.type = avro
simple-agent.sinks.avro-sink.hostname = 192.168.199.203
simple-agent.sinks.avro-sink.port = 41414

simple-agent.channels.memory-channel.type = memory

simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.avro-sink.channel = memory-channel

flume-ng agent \
--name simple-agent \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/flume_push_streaming.conf \
-Dflume.root.logger=INFO,console


hadoop000:是服务器的地址
local的模式进行Spark Streaming代码的测试 192.168.199.203

本地测试总结
1)启动sparkstreaming作业
2) 启动flume agent
3) 通过telnet输入数据,观察IDEA控制台的输出

 

spark-submit \
--class com.imooc.spark.FlumePushWordCount \
--master local[2] \
--packages org.apache.spark:spark-streaming-flume_2.11:2.2.0 \
/home/hadoop/lib/sparktrain-1.0.jar \
hadoop000 41414

 

铭文二级:

第8章 Spark Streaming进阶与案例实战

复制NetworkWordCount改成TransformApp:

1.构建黑名单

val blacks = List("zs","ls")

val blacksRDD = ssc.sparkContext.parallelize(blacks).map(x=>(x,true))

传入的数据:20180808,zs

需要构建的各种形式:(zs: 20180808,zs)(ls: 20180808,ls)(ww: 20180808,ww)

黑名单:(zs: true)(ls: true)

RDD=(zs: [<20180808,zs>, <true>]) x 
(ls: [<20180808,ls>, <true>]) x
(ww: [<20180808,ww>, <false>]) 

 

val clicklog = lines.map(x => (x.split(",")(1),x)).transform(rdd => {

  rdd.leftOuterJoin(blacksRDD)

  .filter(x => x._2._2.getOrElse(flase) != true)

  .map(x => x._2._1)

})

 

clicklog.print()    //打印来看看

实战:整合Spark Streaming与Spark SQL的操作

直接拷贝官方源码来测试->点击

导入相应的包

在pom.xml导入SparkSQL的依赖(将Spark Streaming的改成sql即可)

官方关键代码:

// Convert RDD[String] to RDD[case class] to DataFrame
val wordsDataFrame = rdd.map(w => Record(w)).toDF()
// Creates a temporary view using the DataFrame
wordsDataFrame.createOrReplaceTempView("words")

运行监测即可

 

第9章 Spark Streaming整合Flume(push与pull方式)

push方式(看官网):

一、Flume配置->二、导入依赖->三、FlumeUtils->四、spark-submit提交

 

一、cp exec-memory-avro.conf flume-push-streaming.conf

修改agent、source、channel、sink名称(官网点击

exec source改成netcat source因为等下从端口获取数据

type、bind、port:44444

sink改成avro sink:

type、hostname、port:41414

 

二、导入依赖(官网模板):

资源依赖参考对比:

Source     Artifact
Kafka      spark-streaming-kafka-0-8_2.11
Flume      spark-streaming-flume_2.11
Kinesis    spark-streaming-kinesis-asl_2.11 [Amazon Software License]

 

三、FlumeUtils(参数由Edit Configurations传入)返回值为JavaReceiverInputDStream:

/**
  * Spark Streaming整合Flume的第一种方式
  */
object FlumePushWordCount {
  def main(args: Array[String]): Unit = {
    if(args.length != 2) {
      System.err.println("Usage: FlumePushWordCount <hostname> <port>")
      System.exit(1)
    }
    val Array(hostname, port) = args
    val sparkConf = new SparkConf() //.setMaster("local[2]").setAppName("FlumePushWordCount")
    val ssc = new StreamingContext(sparkConf, Seconds(5))
    //TODO... 如何使用SparkStreaming整合Flume
    val flumeStream = FlumeUtils.createStream(ssc, hostname, port.toInt)
    flumeStream.map(x=> new String(x.event.getBody.array()).trim)
      .flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()
    ssc.start()
    ssc.awaitTermination()
  }
}

 

本机代码联调测试:

1、sink上的ip改成本机ip

2、本地测试的代码就修改成自己0.0.0.0,port为41414

3、启动顺序:

启动代码程序->Flume启动->telnet localhost 44444

 

四、spark-submit提交到生产:

打包:mvn clean package -DskipTests

可以得到路径:sparktrain-1.0.jar

 

传文件到虚拟机命令(仅适用于mac用户):

scp sparktrain-1.0.jar hadoop@hadoop000:~/lib

完整指令:

spark-submit \

--class com.imooc.spark.FlumePushWordCount \
--master local[2] \
--packages org.apache.spark:spark-streaming-flume_2.11:2.2.0 \
/home/hadoop/lib/sparktrain-1.0.jar \
hadoop000 41414

 

posted on 2018-01-30 00:36  旷课小王子  阅读(302)  评论(0编辑  收藏  举报