集技术与颜值于一身

日就月将,学有缉熙于光明

导航

【慕课网实战】Spark Streaming实时流处理项目实战笔记六之铭文升级版

铭文一级:

整合Flume和Kafka的综合使用

avro-memory-kafka.conf

avro-memory-kafka.sources = avro-source
avro-memory-kafka.sinks = kafka-sink
avro-memory-kafka.channels = memory-channel

avro-memory-kafka.sources.avro-source.type = avro
avro-memory-kafka.sources.avro-source.bind = hadoop000
avro-memory-kafka.sources.avro-source.port = 44444

avro-memory-kafka.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSink
avro-memory-kafka.sinks.kafka-sink.brokerList = hadoop000:9092
avro-memory-kafka.sinks.kafka-sink.topic = hello_topic
avro-memory-kafka.sinks.kafka-sink.batchSize = 5
avro-memory-kafka.sinks.kafka-sink.requiredAcks =1

avro-memory-kafka.channels.memory-channel.type = memory

avro-memory-kafka.sources.avro-source.channels = memory-channel
avro-memory-kafka.sinks.kafka-sink.channel = memory-channel

 

flume-ng agent \
--name avro-memory-kafka \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/avro-memory-kafka.conf \
-Dflume.root.logger=INFO,console


flume-ng agent \
--name exec-memory-avro \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/exec-memory-avro.conf \
-Dflume.root.logger=INFO,console

 

kafka-console-consumer.sh --zookeeper hadoop000:2181 --topic hello_topic

铭文二级:

Kafka Producer java API编程:

建KafkaProperties类=>

申明三个静态属性:

public static final String 

1.BROKER_LIST="192.168.0.115:9092"  //IP地址修改成自己的地址

2.ZK="192.168.0.115:2181"         //IP地址修改成自己的地址

3.TOPIC="hello_topic"

建KafkaProducer类=>

创建构造方法实现123小点,参数为topic:(构造方法为私有还是公有?公有)

1.申明Producer类(导入类为kafka.javaapi.Producer),查看返回值与参数值

2.参数值new ProducerConfig(),里面参数为properties(在构造方法中new出来)

3.properties需要put三个属性:

A.metadata.broker.list  //类静态方法获得

B.serializer.class     //kafka.serializer.StringEncoder

C.request.required.acks //值说明如下:

0:不等待任何握手机制;

1:写到本地log并返回ack,常用,但可能有一丁点数据丢失

-1:严格握手,只要有副本存活就没有数据丢失

4.使类继承Thread类,因为使用线程测试

public void run(){
  int messageNo = 1;
  while(true){
    String message = "message_" + messageNo;
    producer.send(new KeyedMessage<Integer,String>(topic,message));
    system.out.println("Send:" + message);
    messageNo++;
  }
  try{
    Thread.sleep(2000);
  }catch(Exception e){
    e.printStackTrace();
  }
}

建KafkaClientApp测试类:

1.申明main方法

2.new KafkaProducer(KafkaProperties.TOPIC).start();

3.jps查询是否已启动zookeeper、kafka、consumer,必须先启动

4.运行main方法可观察到控制台与consumer终端有内容输出

 

Kafka Consumer java API编程:

创建KafkaConsumer类=>

申明参数为topic的构造方法

    private ConsumerConnector createConnector(){
        Properties properties = new Properties();
        properties.put("zookeeper.connect", KafkaProperties.ZK);
        properties.put("group.id",KafkaProperties.GROUP_ID);
        return Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
    }
    public void run() {
        ConsumerConnector consumer = createConnector();
        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
        topicCountMap.put(topic, 1);
//        topicCountMap.put(topic2, 1);
//        topicCountMap.put(topic3, 1);
        // String: topic
        // List<KafkaStream<byte[], byte[]>>  对应的数据流
        Map<String, List<KafkaStream<byte[], byte[]>>> messageStream =  consumer.createMessageStreams(topicCountMap);
        KafkaStream<byte[], byte[]> stream = messageStream.get(topic).get(0);   //获取我们每次接收到的数据
        ConsumerIterator<byte[], byte[]> iterator = stream.iterator();
        while (iterator.hasNext()) {
            String message = new String(iterator.next().message());
            System.out.println("rec: " + message);
        }
    }

代码分析:

1.获取Consumer,根据分装过的topicCountMap生成信息流messageStream 

topicCountMap.put(topic,1);//参数“1” 指生成一个信息流

2.此时messageStream里面还有topic,需要去除topic,返回stream

3.将stream进行迭代,返回iterator

4.通过while(iterator.hasNext())与iterator.next().message()生成message并返回

ps:KafkaProperties类勿忘需要加一个属性GROUP_ID并添加到properties,自起一个id即可

示例:

  public static final String GROUP_ID = "test_group1";

  properties.put("group.id",KafkaProperties.GROUP_ID);

 

Kafka实战=>

整合Flume和kafka完成实时数据采集

修改avro-memory-logger.conf//将sink改成kafka,详情可看CDH5里面的文档,官网新版有些小改动

type:org.apache.flume.sink.kafka.KafkaSink

brokerList:hadoop000:9092

非必须:

topic    //自己尝试不设置是否可以,默认是调用含有topic参数的topic

batchSize:5    

requiredAcks:1

分别开始,然后测试。

ps:上面属性名已经不推荐,最新官网为,可能跟版本有关,自行测试:

 

posted on 2018-01-26 19:33  旷课小王子  阅读(339)  评论(0编辑  收藏  举报