POJ 2391 Ombrophobic Bovines 网络流 建模

【题目大意】
给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T使得在T时间内所有的牛都能进到某一牛棚里去。(1 <= N <= 200, 1 <= M <= 1500, 0 <= Ai <= 1000, 0 <= Bi <= 1000, 1 <= Dij <= 1,000,000,000)

 

一开始想拆点建图,0到x集合为汇,值为各个区域的牛数量, Y到终点连边,值为各个区域的容量,然后就是看怎么连x和y了

我一开始把可以连接的X和Y连起来,把可以互达的点在Y集合点那里连边,这样很麻烦,先跑一遍floyd把点到点的最短路求出来,然后直接X和Y集合可达即相连就行

二分结果,再建图,把在mid以内的X点对Y点连起来,跑最大流 判断结果即可

注意要用long long

一开始还没看清题意,一条路上可以同时走无数的牛,我一开始以为只能走一头,还敲MCMF去了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#define LL long long
#define INF 1LL<<60
using namespace std;
int f,p;
const int maxn=500;
struct Edge
{
    int from,to,cap,flow;
};
struct Dinic
{
    vector<Edge>edges;
    vector<int> G[maxn];
    int vis[maxn];
    int cur[maxn];
    int d[maxn];
    void init(int n)
    {
        edges.clear();
        for (int i=0; i<=n; i++)
        {
            G[i].clear();
        }
    }
    void addedge(int from,int to,int cap)
    {
        int m;
        edges.push_back((Edge)
        {
            from,to,cap,0
        });
        edges.push_back((Edge)
        {
            to,from,0,0
        });
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool bfs(int s,int t)
    {
        memset(vis,0,sizeof vis);
        queue<int> q;
        q.push(s);
        d[s]=0;
        vis[s]=1;
        while (!q.empty())
        {
            int u=q.front();
            q.pop();
            for (int i=0; i<G[u].size(); i++)
            {
                Edge& e=edges[G[u][i]];
                if (!vis[e.to] && e.cap>e.flow)
                {
                    vis[e.to]=1;
                    d[e.to]=d[u]+1;
                    q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int dfs(int x,int a,int t)
    {
        if (x==t || a==0) return a;
        int flow=0,f;
        for (int& i=cur[x]; i<G[x].size(); i++)
        {
            Edge& e=edges[G[x][i]];
            if (d[x]+1==d[e.to] && (f=dfs(e.to,min(a,e.cap-e.flow),t))>0)
            {
                e.flow+=f;
                edges[G[x][i]^1].flow-=f;
                flow+=f;
                a-=f;
                if (a==0) break;
            }
        }
        return flow;
    }
    int maxflow(int s,int t)
    {
        int flow=0;
        while (bfs(s,t))
        {

            memset(cur,0,sizeof cur);
            flow+=dfs(s,100000000,t);
        }
              return flow;
    }
} mcmf;
int A[210],B[210];
LL path[210][210];
LL N;
void floyd()
{
    for (int i=1; i<=f; i++)
    {
        for (int j=1; j<=f; j++)
        {
            for (int k=1; k<=f; k++)
            {
                if (j==k) continue;
                path[j][k]=min(path[j][k],path[j][i]+path[i][k]);
                N=max(N,path[j][k]);
            }
        }
    }
}
int main()
{
    //freopen("POJ_2391.in","r",stdin);
    int a,b;
    LL c;
    while (scanf("%d%d",&f,&p)!=EOF)
    {
        int cur=0;
        for (int i=1; i<=f; i++)
        {
            scanf("%d%d",&A[i],&B[i]);
            cur+=A[i];
            for(int j=1; j<=f; j++) path[i][j]=INF;
        }
        for (int i=1; i<=p; i++)
        {
            scanf("%d%d%lld",&a,&b,&c);
            path[a][b]=min(path[a][b],c);
            path[b][a]=min(path[b][a],c);
        }
        N=0;
        floyd();
        LL l,r,mid;
        l=1,r=N;
        //cout<<l<<" "<<r<<endl;
        LL ans=-1;
        while(l<r)
        {
            mcmf.init(2*f+10);
            for (int i=1; i<=f; i++)
            {
                mcmf.addedge(0,i,A[i]);
                mcmf.addedge(i,i+f,1<<30);
            }
            for (int i=1; i<=f; i++)
            {
                mcmf.addedge(i+f,2*f+5,B[i]);
            }
            mid=(r+l)>>1;
            for (int i=1;i<=f;i++){
                for (int j=1;j<=f;j++){
                    if (path[i][j]>mid || i==j) continue;
                    mcmf.addedge(i,f+j,1<<30);
                }
            }
            int res=mcmf.maxflow(0,2*f+5);
            if (res>=cur){
                //cout<<res<<" "<<cur<<endl;
                //cout<<mid<<endl;
                ans=mid;
                r=mid;
            }
            else{
                l=mid+1;
            }

        }
        printf("%lld\n",ans);
    }
    return 0;
}

  

posted @ 2014-10-09 15:45  KRisen  阅读(201)  评论(0编辑  收藏  举报