Typesetting math: 100%

EOJ Monthly 2018.1 F 最小OR路径

题目链接

Description

给定一个有 n 个点和 m 条边的无向图,其中每一条边 ei 都有一个权值记为 wi

对于给出的两个点 ab ,求一条 ab 的路径,使得路径上的边权的 OR(位或)和最小,输出这个值。(也就是说,如果将路径看做边的集合 {e1,e2,,ek},那么这条路径的代价为 w1 OR w2 OR  OR wk,现在求一条路径使得其代价最小,输出这个代价。如果不存在这样的路径,输出 1

Input

Easy

2n104,0m106,0ci2621

Hard

2n104,0m106,0ci2621

题解 By zerol

Easy

dp[u][k] 表示到结点 u 的代价为 k 的方案是否存在,然后在图上转移(dfs 一下就好了)。

Hard

假设答案的二进制位全是 1,然后从高位到低位考虑,如果将该位置为 0 不破坏连通性的话就置为 0,这样肯定最优。
判断连通性可以用 并查集 或者 搜索,反正 O(M) 就行。
复杂度 O(63M)

对比

稍微回顾一下之前的 bzoj 2115 [Wc2011] Xor 路径最大异或和 线性基

共同点:从高位向低位做,判断当前位能否置为1或0(毕竟都是位运算)

不同点:
Xor那道题是预处理出来一条路径,以及所有可以补充于其上的路径。所以,判断能否置为1即是看能否添加这条路径。
而这道题,因为OR运算的性质,直观想来,添加的路径越少OR和就越小。所以,判断当前位能否置为0即是通过连通性来判断。

Code

Easy

#include <bits/stdc++.h>
#define maxn 1100
#define maxm 10010
using namespace std;
bool vis[maxn][maxn];
struct Edge { int to, ne, w; } edge[maxm << 1];
int tot, ne[maxn];
void add(int u, int v, int w) {
    edge[tot] = {v, ne[u], w};
    ne[u] = tot++;
}
typedef long long LL;
void dfs(int u, int ors) {
    if (vis[u][ors]) return;
    vis[u][ors] = true;
    for (int i = ne[u]; ~i; i = edge[i].ne) {
        int v = edge[i].to;
        dfs(v, ors | edge[i].w);
    }
}
int main() {
    memset(ne, -1, sizeof ne);
    int n, m;
    scanf("%d%d", &n,&m);
    int u, v, w;
    for (int i = 0; i < m; ++i) {
        scanf("%d%d%d", &u,&v,&w);
        add(u,v,w); add(v, u, w);
    }
    scanf("%d%d", &u, &v);
    dfs(u, 0);
    for (int i = 0; i <= 1024; ++i) {
        if (vis[v][i]) { printf("%d\n", i); return 0; }
    }
    puts("-1");
    return 0;
}

Hard

#include <bits/stdc++.h>
#define maxn 10010
#define maxm 1000010
using namespace std;
typedef long long LL;
vector<int> a[maxn];
struct Edge { int u, v; } edge[maxm];
void add(LL w, int id) {
    int cnt = 0;
    while (w) {
        if (w & 1) a[cnt].push_back(id);
        w >>= 1, ++cnt;
    }
}
int s, t, n, m, fa[maxn], sz[maxn];
bool exc[maxm], flag[64];
int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
void unionn(int u, int v) {
    u = find(u), v = find(v);
    if (sz[u] < sz[v]) swap(u, v);
    sz[u] += sz[v], fa[v] = u;
}
bool ok(int id) {
    memset(exc, 0, sizeof exc);
    for (int i = 62; i >= id; --i) {
        if (!flag[i]) {
            for (auto x : a[i]) exc[x] = true;
        }
    }
    for (int i = 1; i <= n; ++i) fa[i] = i, sz[i] = 1;
    for (int i = 0; i < m; ++i) {
        if (!exc[i]) unionn(edge[i].u, edge[i].v);
    }
    return find(s) == find(t);
}
int main() {
    scanf("%d%d", &n,&m);
    for (int i = 0; i < m; ++i) {
        int u, v; LL w;
        scanf("%d%d%lld", &u,&v,&w);
        edge[i] = {u, v};
        add(w, i);
    }
    scanf("%d%d", &s, &t);
    if (!ok(64)) { puts("-1"); return 0; }
    LL ans = 0;
    for (int i = 62; i >= 0; --i) {
        ans <<= 1;
        if (!ok(i)) flag[i] = 1, ans |= 1;
    }
    printf("%lld\n", ans);
    return 0;
}
posted @   救命怀  阅读(294)  评论(0编辑  收藏  举报
编辑推荐:
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
阅读排行:
· 互联网不景气了那就玩玩嵌入式吧,用纯.NET开发并制作一个智能桌面机器人(四):结合BotSharp
· Vite CVE-2025-30208 安全漏洞
· 《HelloGitHub》第 108 期
· MQ 如何保证数据一致性?
· 一个基于 .NET 开源免费的异地组网和内网穿透工具
点击右上角即可分享
微信分享提示