基于python的数学建模---运输问题

代码
import pulp import numpy as np from pprint import pprint def transport_problem(costs, x_max, y_max): row = len(costs) col = len(costs[0]) prob = pulp.LpProblem('Transportation Problem', sense=pulp.LpMaximize) var = [[pulp.LpVariable(f'x{i}{j}', lowBound=0, cat=pulp.LpInteger) for j in range(col)] for i in range(row)] flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]#定义一个x,x若为列表形式则执行for循环,flatten将多维数组转换为一维数组 prob += pulp.lpDot(flatten(var), costs.flatten())#costs是numpy定义的,有自己的函数 for i in range(row): prob += (pulp.lpSum(var[i])) <= x_max[i] for j in range(col): prob += (pulp.lpSum(var[i][j] for i in range(row)) <= y_max[j]) prob.solve() return {'objective': pulp.value(prob.objective), 'var': [[pulp.value(var[i][j]) for j in range(col)] for i in range(row)]} if __name__ == '__main__': costs = np.array([[500, 550, 630, 1000, 800, 700], [800, 700, 600, 950, 900, 930], [1000, 960, 840, 650, 600, 700], [1200, 1040, 980, 860, 880, 780]]) max_plant = [76, 88, 96, 40] max_cultivation = [42, 56, 44, 39, 60, 59] res = transport_problem(costs, max_plant, max_cultivation) print(f'最大值为{res["objective"]}') print('各变量的取值为: ') pprint(res['var'])
最大值为284230.0
各变量的取值为:
[[0.0, 0.0, 6.0, 39.0, 31.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 29.0, 59.0],
[2.0, 56.0, 38.0, 0.0, 0.0, 0.0],
[40.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律