R语言 ur.df函数
It seems the creators of this particular R command presume one is familiar with the original Dickey-Fuller formulae, so did not provide the relevant documentation for how to interpret the values. I found that Enders was an incredibly helpful resource (Applied Econometric Time Series 3e, 2010, p. 206-209--I imagine other editions would also be fine). Below I'll use data from the URCA package, real income in Denmark as an example.
> income <- ts(denmark$LRY)
It might be useful to first describe the 3 different formulae Dickey-Fuller used to get different hypotheses, since these match the ur.df "type" options. Enders specifies that in all of these 3 cases, the consistent term used is gamma, the coefficient for the previous value of y, the lag term. If gamma=0, then there is a unit root (random walk, nonstationary). Where the null hypothesis is gamma=0, if p<0.05, then we reject the null (at the 95% level), and presume there is no unit root. If we fail to reject the null (p>0.05) then we presume a unit root exists. From here, we can proceed to interpreting the tau's and phi's.
1) type="none": Δ𝑦(𝑡)=𝛾∗𝑦(𝑡−1)+𝑒(𝑡)Δy(t)=γ∗y(t−1)+e(t) (formula from Enders p. 208)
(where 𝑒(𝑡)e(t) is the error term, presumed to be white noise; 𝛾=𝑎−1γ=a−1 from 𝑦=𝑎∗𝑦(𝑡−1)+𝑒(𝑡)y=a∗y(t−1)+e(t); 𝑦(𝑡−1)y(t−1) refers to the previous value of y, so is the lag term)
For type= "none," tau (or tau1 in R output) is the null hypothesis for gamma = 0. Using the Denmark income example, I get "Value of test-statistic is 0.7944" and the "Critical values for test statistics are: tau1 -2.6 -1.95 -1.61. Given that the test statistic is within the all 3 regions (1%, 5%, 10%) where we fail to reject the null, we should presume the data is a random walk, ie that a unit root is present. In this case, the tau1 refers to the gamma = 0 hypothesis. The "z.lag1" is the gamma term, the coefficient for the lag term (y(t-1)), which is p=0.431, which we fail to reject as significant, simply implying that gamma isn't statistically significant to this model. Here is the output from R
> summary(ur.df(y=income, type = "none",lags=1))
>
> ###############################################
> # Augmented Dickey-Fuller Test Unit Root Test #
> ###############################################
>
> Test regression none
>
>
> Call:
> lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
>
> Residuals:
> Min 1Q Median 3Q Max
> -0.044067 -0.016747 -0.006596 0.010305 0.085688
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> z.lag.1 0.0004636 0.0005836 0.794 0.431
> z.diff.lag 0.1724315 0.1362615 1.265 0.211
>
> Residual standard error: 0.0251 on 51 degrees of freedom
> Multiple R-squared: 0.04696, Adjusted R-squared: 0.009589
> F-statistic: 1.257 on 2 and 51 DF, p-value: 0.2933
>
>
> Value of test-statistic is: 0.7944
>
> Critical values for test statistics: