POJ 3693 后缀数组
题目链接:http://poj.org/problem?id=3693
题意:首先定义了一个字符串的重复度。即一个字符串由一个子串重复k次构成。那么最大的k即是该字符串的重复度。现在给定一个长度为n的字符串,求最大重复次数的子串,有多解时输出字典序最小解。
思路:与SPOJ的题意差不多,可以点击这里看<<SPOJ REPEATS 后缀数组>>
说下字典序的问题,想记录size=最大重复次数,把所有满足条件的长度L都记录起来,因为求的是字典序最小,那么就可以按照sa数组记录的后缀位置来判断,如果index=sa[i]和index+L的LCP>=(size-1)*L,那么index开始长度为(size*L)的子串就是所要的答案,因为是sa数组的顺序来求的,所以第一个解肯定是最优解。
#define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<string> #include<queue> #include<vector> #include<time.h> #include<cmath> using namespace std; typedef long long int LL; const int MAXN = 100000 + 5; int cmp(int *r, int a, int b, int l){ return r[a] == r[b] && r[a + l] == r[b + l]; } int wa[MAXN], wb[MAXN], wv[MAXN], WS[MAXN]; void da(int *r, int *sa, int n, int m){ int i, j, p, *x = wa, *y = wb, *t; for (i = 0; i < m; i++) { WS[i] = 0; } for (i = 0; i < n; i++) { WS[x[i] = r[i]]++; } for (i = 1; i < m; i++) { WS[i] += WS[i - 1]; } for (i = n - 1; i >= 0; i--) { sa[--WS[x[i]]] = i; } for (j = 1, p = 1; p<n; j *= 2, m = p) { for (p = 0, i = n - j; i < n; i++) { y[p++] = i; } for (i = 0; i < n; i++) { if (sa[i] >= j){ y[p++] = sa[i] - j; } } for (i = 0; i < n; i++) { wv[i] = x[y[i]]; } for (i = 0; i < m; i++) { WS[i] = 0; } for (i = 0; i < n; i++) { WS[wv[i]]++; } for (i = 1; i < m; i++) { WS[i] += WS[i - 1]; } for (i = n - 1; i >= 0; i--) { sa[--WS[wv[i]]] = y[i]; } for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++){ x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++; } } return; } int Rank[MAXN], height[MAXN],sa[MAXN]; void calheight(int *r, int *sa, int n){ int i, j, k = 0; for (i = 1; i <= n; i++) { Rank[sa[i]] = i; } for (i = 0; i < n; height[Rank[i++]] = k){ for (k ? k-- : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k++); } return; } int RMQ[MAXN],mm[MAXN],best[20][MAXN]; void initRMQ(int n){ int i, j, a, b; for (mm[0] = -1, i = 1; i <= n; i++) mm[i] = ((i&(i - 1)) == 0) ? mm[i - 1] + 1 : mm[i - 1]; for (i = 1; i <= n; i++) best[0][i] = i; for (i = 1; i <= mm[n]; i++) for (j = 1; j <= n + 1 - (1 << i); j++) { a = best[i - 1][j]; b = best[i - 1][j + (1 << (i - 1))]; if (RMQ[a]<RMQ[b]) best[i][j] = a; else best[i][j] = b; } return; } int askRMQ(int a, int b){ int t; t = mm[b - a + 1]; b -= (1 << t) - 1; a = best[t][a]; b = best[t][b]; return RMQ[a]<RMQ[b] ? a : b; } int lcp(int a, int b){ int t; a = Rank[a]; b = Rank[b]; if (a>b) { t = a; a = b; b = t; } return(height[askRMQ(a + 1, b)]); } int r[MAXN], Ca=1, len; char str[MAXN]; void solve(){ int ansSize=1; vector<int>tmpL; //保存对于相同的重复次数的情况下,所以可能的长度 for (int L = 1; L <= len; L++){ for (int i = 0; i + 2*L<=len; i+=L){ int lcpLen = lcp(i, i + L); int tmp = lcpLen / L + 1; int sur = (L - lcpLen%L); int prei = i - sur; if (prei >= 0 && prei + L < len&&lcp(prei,prei+L)>=L){ tmp++; } if (tmp > ansSize){ //更优解 ansSize = tmp; //更新解 tmpL.clear(); //清除原来的长度 tmpL.push_back(L); //保存新的长度 } if (tmp == ansSize){ //用于相同的循环次数 tmpL.push_back(L); //记录长度 } } } tmpL.erase(unique(tmpL.begin(), tmpL.end()),tmpL.end());//去重 int index;//记录答案的起点 for (int i = 1,flag=0;i <= len&&!flag; i++){ //按后缀字典序找答案 for (int j = 0; j < tmpL.size(); j++){ int L = tmpL[j]; //长度 if (sa[i]+L<=len&&lcp(sa[i], sa[i] + L) >= (ansSize - 1)*L){ index = sa[i]; flag = 1; //找到答案 str[sa[i] + ansSize*L] = '\0'; break; } } } printf("Case %d: %s\n", Ca++, str + index); } int main(){ //#ifdef kirito // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); //#endif // int start = clock(); while (scanf("%s",str)&&str[0]!='#'){ len = strlen(str); for (int i = 0; i < len; i++){ r[i] = str[i]-'a'+1; } r[len] = 0; da(r, sa, len+1, 30); calheight(r, sa, len); for (int i = 1; i <= len; i++){ RMQ[i] = height[i]; } initRMQ(len); solve(); } //#ifdef LOCAL_TIME // cout << "[Finished in " << clock() - start << " ms]" << endl; //#endif return 0; }