Elasticsearch7.8.0教程(二)
Elasticsearch7.8.0教程(二)
一. Request Body深入搜索
1.1 term查询
term是表达语义的最小单位,在搜索的时候基本都要使用到term。
term查询的种类有:Term Query、Range Query等。
在ES中,Term查询不会对输入进行分词处理,将输入作为一个整体,在倒排索引中查找准确的词项。 我们也可以使用 Constant Score 将查询转换为一个filter,避免算分,利用缓存,提高查询的效率。
1.1.1 查询电影名字中包含有 beautiful 这个单词的所有的电影,用于查询的单词不会进行分词的处理
#查询到98条结果
GET movies/_search
{
"query": {
"term": {
"title": {
"value": "beautiful"
}
}
}
}
#查询到0条结果(term查询不会分词,相当于用Beautiful去查询,但user的索引存入时默认standard分词,倒排索引关键词是beautiful)
GET movies/_search
{
"query": {
"term": {
"title": {
"value": "Beautiful"
}
}
}
}
1.1.2 查询电影名字中包含有 beautiful 或者 mind 这两个单词的所有的电影,用于查询的单词不会进行分词的处理
GET movies/_search
{
"query": {
"terms": {
"title": [
"beautiful",
"mind"
]
}
}
}
1.1.3 查询上映在2016到2018年的所有的电影,再根据上映时间的倒序进行排序
GET movies/_search
{
"query": {
"range": {
"year": {
"gte": 2016,
"lte": 2018
}
}
},
"sort": [
{
"year": {
"order": "desc"
}
}
]
}
1.1.4 Constant Score查询(只能用term查询) title中包含有beautiful的所有的电影,不进行相关性算分,查询的数据进行缓存,提高效率
GET movies/_search
{
"query": {
"constant_score": {
"filter": {
"term": {
"title": "beautiful"
}
},
"boost": 1.2
}
}
}
1.2 全文查询
全文查询的种类有: Match Query、Match Phrase Query、Query String Query等
索引和搜索的时候都会进行分词,在查询的时候,会对输入进行分词,然后每个词项会逐个到底层进行 查询,将最终的结果进行合并
1.2.1 match 查询title中包含beautiful或mind的数据
GET movies/_search
{
"query": {
"match": {
"title": "beautiful mind"
}
}
}
1.2.2 match 查询title中包含beautiful或mind的数据,指定查询属性
GET movies/_search
{
"_source": ["title", "id", "year"],
"query": {
"match": {
"title": "beautiful mind"
}
}
}
1.2.3 match 查询年份区间为[1990,1992]的数据
GET movies/_search
{
"query": {
"range": {
"year": {
"gte": 1990,
"lte": 1992
}
}
}
}
1.2.4 match 查询年份区间为[1990,1992]的数据,并分页
GET movies/_search
{
"query": {
"range": {
"year": {
"gte": 1990,
"lte": 1992
}
}
},
"from": 5,
"size": 10
}
1.2.5 match 查询年份区间为[1990,1992]的数据,并且title包含beautiful或mind
GET movies/_search
{
"query": {
"bool": {
"must": [
{
"range": {
"year": {
"gte": 1990,
"lte": 1992
}
}
},
{
"match": {
"title": "beautiful mind"
}
}
]
}
}
}
#报错,query只能一种查询
GET movies/_search
{
"_source": ["title", "id", "year"],
"query": {
"match": {
"title": "beautiful mind"
},
"range": {
"year": {
"gte": 1990,
"lte": 1992
}
}
}
}
1.2.6 match_phrase 查询电影名字中包含有 "beautiful mind" 这个短语的所有的数据(以下三个查询一个效果)
GET movies/_search
{
"query": {
"match_phrase": {
"title": "beautiful mind"
}
}
}
GET movies/_search
{
"query": {
"match_phrase": {
"title": "Beautiful mind"
}
}
}
GET movies/_search
{
"query": {
"match_phrase": {
"title": "BEautiful mind"
}
}
}
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 13.474829,
"hits" : [
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "4995",
"_score" : 13.474829,
"_source" : {
"title" : "Beautiful Mind, A",
"genre" : [
"Drama",
"Romance"
],
"year" : 2001,
"id" : "4995",
"@version" : "1"
}
}
]
}
}
1.2.7 match_all 查询所有的数据
GET movies/_search
{
"query": {
"match_all": {}
}
}
#和不加request body等同
GET movies/_search
1.2.8 multi_match 查询title或genre中包含有beautiful或者Adventure的前20条数据
GET movies/_search
{
"query": {
"multi_match": {
"query": "beautiful adventure",
"fields": ["title", "genre"]
}
},
"size": 20
}
1.2.9 query_string
#this或that
GET movies/_search
{
"query": {
"query_string": {
"default_field": "title",
"query": "this that"
}
}
}
#this或that
GET movies/_search
{
"query": {
"query_string": {
"default_field": "title",
"query": "this that",
"default_operator": "OR"
}
}
}
#this和that
GET movies/_search
{
"query": {
"query_string": {
"default_field": "title",
"query": "this AND that"
}
}
}
#this和that
GET movies/_search
{
"query": {
"query_string": {
"default_field": "title",
"query": "this that",
"default_operator": "AND"
}
}
}
1.2.10 simple_query_string
查询title中包含 beautiful或and或mind
GET movies/_search
{
"query": {
"simple_query_string": {
"query": "beautiful AND mind",
"fields": ["title"]
}
}
}
查询title中包含 beautiful或and
GET movies/_search
{
"query": {
"simple_query_string": {
"query": "beautiful mind",
"fields": ["title"],
"default_operator": "AND"
}
}
}
GET movies/_search
{
"query": {
"simple_query_string": {
"query": "beautiful + mind",
"fields": ["title"]
}
}
}
查询title中包含 "beautiful mind" 这个短语的所有的电影 (用法和match_phrase类似)
GET movies/_search
{
"query": {
"simple_query_string": {
"query": "\"beautiful mind\"",
"fields": ["title"]
}
}
}
查询title或genre中包含有 beautiful mind romance 这个三个单词的所有的电影 (与 multi_match类似)
GET movies/_search
{
"query": {
"simple_query_string": {
"query": "beautiful mind Romance",
"fields": ["title", "genre"]
}
}
}
查询title中包含 “beautiful mind” 或者 "Modern Romance" 这两个短语的所有的电影
GET movies/_search
{
"query": {
"simple_query_string": {
"query": "\"beautiful mind\" | \"Modern Romance\"",
"fields": ["title", "genre"]
}
}
}
查询title或者genre中包含有 beautiful + mind 这个两个词,或者Comedy + Romance + Musical + Drama + Children 这个五个词的所有的数据
GET movies/_search
{
"query": {
"simple_query_string": {
"query": "(beautiful + mind) | (Comedy + Romance + Musical + Drama + Children)",
"fields": ["title","genre"]
}
}
}
查询 title 中包含 beautiful 和 people 但是不包含 Animals 的所有的数据
GET movies/_search
{
"query": {
"simple_query_string": {
"query": "beautiful + people + -Animals",
"fields": ["title"]
}
}
}
1.3 fuzzy 模糊搜索
#3条结果
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverending"
}
}
}
}
neverending改为neverendign(一次调整);neverending改为neverendong(一次调整);neverending改为neverendogn(两次调整);neverending改为neverendoon(三次调整)
从以下结果来看:不加fuzziness默认调整1或2次,加上后指定调整次数查询,fuzziness的取值区间为[0, 2]
#3条结果
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverendign"
}
}
}
}
#3条结果
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverendong"
}
}
}
}
#3条结果
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverendong",
"fuzziness": 1
}
}
}
}
#3条结果
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverendong",
"fuzziness": 2
}
}
}
}
#3条结果
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverendogn"
}
}
}
}
#0条结果
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverendogn",
"fuzziness": 1
}
}
}
}
#3条结果
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverendogn",
"fuzziness": 2
}
}
}
}
#0条结果
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverendoon"
}
}
}
}
#0条结果
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverendoon",
"fuzziness": 3
}
}
}
}
查询title中从第6个字母开始只要最多纠正一次,就与 neverendign 匹配的所有的数据
GET movies/_search
{
"query": {
"fuzzy": {
"title": {
"value": "neverendign",
"fuzziness": 1,
"prefix_length": 5
}
}
}
}
1.4 多条件查询
1.4.1 查询title中包含有beautiful或者mind单词,并且上映时间在2016~1018年的所有的电影
GET movies/_search
{
"query": {
"bool": {
"must": [
{
"simple_query_string": {
"query": "beautiful mind",
"fields": ["title"]
}
},
{
"range": {
"year": {
"gte": 2016,
"lte": 2018
}
}
}
]
}
}
}
1.4.2 查询title中包含有beautiful或者mind,且不包含brain,上映时间在2016~1018年的所有的电影
# must必须满足,must_not必须不满足,若只有must_not则不会进行相关性算分
GET movies/_search
{
"query": {
"bool": {
"must": [
{
"simple_query_string": {
"query": "beautiful mind",
"fields": ["title"]
}
},
{
"range": {
"year": {
"gte": 2016,
"lte": 2018
}
}
}
],
"must_not": [
{
"simple_query_string": {
"query": "brain",
"fields": ["title"]
}
}
]
}
}
}
1.4.3 查询 title 中包含有 beautiful这个单词,并且上映年份在1990~1992年间的所有电影,但是不 进行相关性的算分
#filter不会进行相关性的算分,并且会将查出来的结果进行缓存,效率上比 must 高
GET movies/_search
{
"query": {
"bool": {
"filter": [
{
"terms": {
"title": [
"beautiful"
]
}
},
{
"range": {
"year": {
"gte": 1990,
"lte": 1992
}
}
}
]
}
}
}
1.4.4 查询 title 中包含有 beautiful这个单词,或者上映年份在1990~1992年间的所有电影
GET movies/_search
{
"query": {
"bool": {
"should": [
{
"terms": {
"title": [
"beautiful"
]
}
},
{
"range": {
"year": {
"gte": 1990,
"lte": 1992
}
}
}
]
}
}
}
二. Mapping
mapping类似于数据库中的schema,作用如下:
- 定义索引中的字段类型;
- 定义字段的数据类型,例如:布尔、字符串、数字、日期.....
- 字段倒排索引的设置
2.1数据类型
类型名 | 描述 |
---|---|
Text/Keyword | 字符串, Keyword的意思是字符串的内容不会被分词处理,输入是什么内容,存 储在ES中就是什么内容。Text类型ES会自动的添加一个Keyword类型的子字段 |
Date | 日期类型 |
Integer/Float/Long | 数字类型 |
Boolean | 布尔类型 |
ES中还有 "对象类型/嵌套类型"、"特殊类型(geo_point/geo_shape)"。
2.2 Mapping的定义
定义mapping的建议方式: 写入一个样本文档到临时索引中,ES会自动生成mapping信息,通过访问 mapping信息的api查询mapping的定义,修改自动生成的mapping成为我们需要方式,创建索引,删 除临时索引,简而言之就是 “卸磨杀驴” 。
语法格式如下:
PUT users
{
"mappings": {
// define your mappings here
}
}
查看mapping
GET movies/_mapping
keyword搜索
GET movies/_search
{
"query": {
"match": {
"title.keyword": "Julia"
}
}
}
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 9.717158,
"hits" : [
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "32234",
"_score" : 9.717158,
"_source" : {
"title" : "Julia",
"genre" : [
"Drama"
],
"year" : 1977,
"id" : "32234",
"@version" : "1"
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "58937",
"_score" : 9.717158,
"_source" : {
"title" : "Julia",
"genre" : [
"Drama",
"Thriller"
],
"year" : 2008,
"id" : "58937",
"@version" : "1"
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "129333",
"_score" : 9.717158,
"_source" : {
"title" : "Julia",
"genre" : [
"Horror",
"Thriller"
],
"year" : 2014,
"id" : "129333",
"@version" : "1"
}
}
]
}
}
2.3 常见参数
2.3.1 index
可以给属性添加一个 布尔类型的index属性,标识该属性是否能被倒排索引,也就是说是否能通过 该字段进行搜索。
2.3.2 null_value
在数据索引进ES的时候,当某些数据为 null 的时候,该数据是不能被搜索的,可以使用 null_value 属性指定一个值,当属性的值为 null 的时候,转换为一个通过 null_value 指 定的值。 null_value属性只能用于Keyword类型的属性
三、高级搜索
3.1 聚合查询
聚合搜索的语法格式如下:
GET indexName/_search
{
"aggs": {
"aggs_name": { #聚合分析的名字是由用户自定义的
"aggs_type": {
// aggregation body
}
}
}
}
给users索引创建mapping信息
PUT employee
{
"mappings": {
"properties": {
"id": {
"type": "integer"
},
"name": {
"type": "keyword"
},
"job": {
"type": "keyword"
},
"age": {
"type": "integer"
},
"gender": {
"type": "keyword"
}
}
}
}
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "employee"
}
往 users 索引中写入数据
PUT employee/_bulk
{"index": {"_id": 1}}
{"id": 1, "name": "Bob", "job": "java", "age": 21, "sal": 8000, "gender": "female"}
{"index": {"_id": 2}}
{"id": 2, "name": "Rod", "job": "html", "age": 31, "sal": 18000, "gender": "female"}
{"index": {"_id": 3}}
{"id": 3, "name": "Gaving", "job": "java", "age": 24, "sal": 12000, "gender": "male"}
{"index": {"_id": 4}}
{"id": 4, "name": "King", "job": "dba", "age": 26, "sal": 15000, "gender": "female"}
{"index": {"_id": 5}}
{"id": 5, "name": "Jonhson", "job": "dba", "age": 29, "sal": 16000, "gender": "male"}
{"index": {"_id": 6}}
{"id": 6, "name": "Douge", "job": "java", "age": 41, "sal": 20000, "gender": "female"}
{"index": {"_id": 7}}
{"id": 7, "name": "cutting", "job": "dba", "age": 27, "sal": 7000, "gender": "male"}
{"index": {"_id": 8}}
{"id": 8, "name": "Bona", "job": "html", "age": 22, "sal": 14000, "gender": "female"}
{"index": {"_id": 9}}
{"id": 9, "name": "Shyon", "job": "dba", "age": 20, "sal": 19000, "gender": "female"}
{"index": {"_id": 10}}
{"id": 10, "name": "James", "job": "html", "age": 18, "sal": 22000, "gender": "male"}
{"index": {"_id": 11}}
{"id": 11, "name": "Golsling", "job": "java", "age": 32, "sal": 23000, "gender": "female"}
{"index": {"_id": 12}}
{"id": 12, "name": "Lily", "job": "java", "age": 24, "sal": 2000, "gender": "male"}
{"index": {"_id": 13}}
{"id": 13, "name": "Jack", "job": "html", "age": 23, "sal": 3000, "gender": "female"}
{"index": {"_id": 14}}
{"id": 14, "name": "Rose", "job": "java", "age": 36, "sal": 6000, "gender": "female"}
{"index": {"_id": 15}}
{"id": 15, "name": "Will", "job": "dba", "age": 38, "sal": 4500, "gender": "male"}
{"index": {"_id": 16}}
{"id": 16, "name": "smith", "job": "java", "age": 32, "sal": 23000, "gender": "male"}
3.1.1 单值的输出
ES中大多数的数学计算只输出一个值,如:min、max、sum、avg、cardinality
# 1.查询工资的总合,sum_sal为自定义属性,作聚合还会查数据
GET employee/_search
{
"aggs": {
"sum_sal": {
"sum": {
"field": "sal"
}
}
}
}
# 只查聚合的结果,不查数据
GET employee/_search
{
"size": 0,
"aggs": {
"sum_sal": {
"sum": {
"field": "sal"
}
}
}
}
# 2.查询平均工资
GET employee/_search
{
"size": 0,
"aggs": {
"avg_sal": {
"avg": {
"field": "sal"
}
}
}
}
# 3.查询总共有多少个岗位(对属性去重后count查询)
GET employee/_search
{
"size": 0,
"aggs": {
"sum_job": {
"cardinality": {
"field": "job"
}
}
}
}
# 4.查询航空平均票价的最大值、最小值、平均值
GET kibana_sample_data_flights/_search
{
"size": 0,
"aggs": {
"max_ticket_price": {
"max": {
"field": "AvgTicketPrice"
}
},
"min_ticket_price": {
"min": {
"field": "AvgTicketPrice"
}
},
"avg_ticket_price": {
"avg": {
"field": "AvgTicketPrice"
}
}
}
}
3.1.2 多值的输出
ES还有些函数,可以一次性输出很多个统计的数据: terms、stats
# 1.查询员工工资信息(数值类型)
GET employee/_search
{
"size": 0,
"aggs": {
"sal_info": {
"stats": {
"field": "sal"
}
}
}
}
# 2.查询到达不同国家的航班数量(分组)
GET kibana_sample_data_flights/_search
{
"size": 0,
"aggs": {
"dest_country_info": {
"terms": {
"field": "DestCountry",
"size": 10
}
}
}
}
# 3.查询每个岗位有多少人
GET employee/_search
{
"size": 0,
"aggs": {
"job_emps_num": {
"terms": {
"field": "job",
"size": 10
}
}
}
}
# 4.查询目标地的航班班次以及天气的统计信息(子聚合)
GET kibana_sample_data_flights/_search
{
"size": 0,
"aggs": {
"dest_country_info": {
"terms": {
"field": "DestCountry"
},
"aggs": {
"dest_country_weather_info": {
"terms": {
"field": "DestWeather"
}
}
}
}
}
}
# 5.查询每个岗位下工资的信息(平均、最高、最少等)
GET employee/_search
{
"size": 0,
"aggs": {
"job_info": {
"terms": {
"field": "job"
},
"aggs": {
"diff_job_sal_info": {
"stats": {
"field": "sal"
}
}
}
}
}
}
# 6.查询不同工种的男女员工数量、然后统计不同工种下男女员工的工资信息
GET employee/_search
{
"size": 0,
"aggs": {
"job_info": {
"terms": {
"field": "job"
},
"aggs": {
"diff_job_gender_no": {
"terms": {
"field": "gender"
},
"aggs": {
"diff_job_gender_sal_info": {
"stats": {
"field": "sal"
}
}
}
}
}
}
}
}
# 7.查询年龄最大的两位员工的信息
GET employee/_search
{
"size": 0,
"aggs": {
"older_two_emp": {
"top_hits": {
"size": 2,
"sort": [
{
"age": {
"order": "desc"
}
}
]
}
}
}
}
# 8.查询不同工资区间员工工资的统计信息
GET employee/_search
{
"size": 0,
"aggs": {
"rang_sal_info": {
"range": {
"field": "sal",
"ranges": [
{
"key": "0 <= sal < 10001",
"to": 10001
},
{
"key": "10001 <= sal < 20001",
"from": 10001,
"to": 20001
},
{
"key": "20001 <= sal < 30001",
"from": 20001,
"to": 30001
}
]
}
}
}
}
# 9.以直方图的方式以每5000元为一个区间查询员工工资信息
GET employee/_search
{
"size": 0,
"aggs": {
"range_sal_info": {
"histogram": {
"field": "sal",
"interval": 5000,
"extended_bounds": {
"min": 0,
"max": 15000
}
}
}
}
}
# 10. 查询平均工资最低的工种
GET employee/_search
{
"size": 0,
"aggs": {
"job_info": {
"terms": {
"field": "job"
},
"aggs": {
"diff_job_avg_sal": {
"avg": {
"field": "sal"
}
}
}
},
"min_avg_sal_job": {
"min_bucket": {
"buckets_path": "job_info>diff_job_avg_sal"
}
}
}
}
# 11.查询年龄大于30岁的员工的平均工资
GET employee/_search
{
"size": 0,
"query": {
"range": {
"age": {
"gt": 30
}
}
},
"aggs": {
"gt_30_emp_avg_sal": {
"avg": {
"field": "sal"
}
}
}
}
# 12.查询Java员工的平均工资(不进行相关性算法,效率更高)
GET employee/_search
{
"size": 0,
"query": {
"constant_score": {
"filter": {
"term": {
"job": "java"
}
},
"boost": 1.2
}
},
"aggs": {
"java_emp_avg_sal": {
"avg": {
"field": "sal"
}
}
}
}
# 13.求30岁以上的员工平均工资和所有员工的平均工资
GET employee/_search
{
"size": 0,
"aggs": {
"all_emp_avg_sal": {
"avg": {
"field": "sal"
}
},
"gt_30_emp_avg_info": {
"filter": {
"range": {
"age": {
"gt": 30
}
}
},
"aggs": {
"gt_30_emp_avg_sal": {
"avg": {
"field": "sal"
}
}
}
}
}
}
3.2 推荐搜索
在搜索过程中,因为单词的拼写错误,没有得到任何的结果,希望ES能够给我们一个推荐搜索。
GET movies/_search
{
"suggest": {
# title_suggestion为我们自定义的名字
"title_suggestion": {
"text": "drema",
"term": {
"field": "title",
"suggest_mode": "popular"
}
}
}
}
suggest_mode,有三个值:popular、missing、always
- popular 是推荐词频更高的一些搜索。
- missing 是当没有要搜索的结果的时候才推荐。 (默认值)
- always无论什么情况下都进行推荐。
GET movies/_search
{
"suggest": {
"title_suggestion": {
"text": "beauti",
"term": {
"field": "title"
}
}
}
}
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 0,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"suggest" : {
"title_suggestion" : [
{
"text" : "beauti",
"offset" : 0,
"length" : 6,
"options" : [
{
"text" : "beauty",
"score" : 0.8333333,
"freq" : 66
},
{
"text" : "beasts",
"score" : 0.6666666,
"freq" : 9
},
{
"text" : "beauties",
"score" : 0.6666666,
"freq" : 5
},
{
"text" : "beastie",
"score" : 0.6666666,
"freq" : 2
},
{
"text" : "beatie",
"score" : 0.6666666,
"freq" : 1
}
]
}
]
}
}
GET movies/_search
{
"suggest": {
"title_suggestion": {
"text": "beauty",
"term": {
"field": "title"
}
}
}
}
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 0,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"suggest" : {
"title_suggestion" : [
{
"text" : "beauty",
"offset" : 0,
"length" : 6,
"options" : [ ]
}
]
}
}
GET movies/_search
{
"suggest": {
"title_suggestion": {
"text": "beauty",
"term": {
"field": "title",
"suggest_mode": "always"
}
}
}
}
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 0,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"suggest" : {
"title_suggestion" : [
{
"text" : "beauty",
"offset" : 0,
"length" : 6,
"options" : [
{
"text" : "beasts",
"score" : 0.6666666,
"freq" : 9
},
{
"text" : "bearly",
"score" : 0.6666666,
"freq" : 1
},
{
"text" : "beastly",
"score" : 0.6666666,
"freq" : 1
},
{
"text" : "beast",
"score" : 0.6,
"freq" : 74
},
{
"text" : "betty",
"score" : 0.6,
"freq" : 13
}
]
}
]
}
}
GET movies/_search
{
"suggest": {
"title_suggestion": {
"text": "beauty",
"term": {
"field": "title",
"suggest_mode": "popular"
}
}
}
}
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 0,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"suggest" : {
"title_suggestion" : [
{
"text" : "beauty",
"offset" : 0,
"length" : 6,
"options" : [
{
"text" : "beast",
"score" : 0.6,
"freq" : 74
}
]
}
]
}
}
3.3 自动补全
自动补全应该是我们在日常的开发过程中最常见的搜索方式了,如百度搜索和京东商品搜索。
自动补全的功能对性能的要求极高,用户每发送输入一个字符就要发送一个请求去查找匹配项。 ES采取了不同的数据结构来实现,并不是通过倒排索引来实现的;需要将对应的数据类型设置为 completion ; 所以在将数据索引进ES之前需要先定义 mapping 信息。
3.3.1 查看mapping
GET movies/_mapping
{
"movies" : {
"mappings" : {
"properties" : {
"@version" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"genre" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"id" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"title" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"year" : {
"type" : "long"
}
}
}
}
}
3.3.2 删索引、重新定义mapping、重新导数据
先查询mapping
GET movies/_mapping
把查询到的mapping做修改,删除索引后再执行创建新mapping,再导入数据
PUT movies
{
"mappings": {
"properties": {
"@version": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"genre": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"title": {
"type": "completion"
},
"year": {
"type": "long"
}
}
}
}
DELETE movies
3.3.3 前缀搜索
GET movies/_search
{
"_source": [""],
"suggest": {
"title_prefix_suggest": {
"prefix": "bu",
"completion": {
"field": "title",
"skip_duplicates": true,
"size": 10
}
}
}
}
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 0,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"suggest" : {
"title_prefix_suggest" : [
{
"text" : "bu",
"offset" : 0,
"length" : 2,
"options" : [
{
"text" : "'burbs, The",
"_index" : "movies",
"_type" : "_doc",
"_id" : "2072",
"_score" : 1.0,
"_source" : { }
},
{
"text" : "Bubba Ho-tep",
"_index" : "movies",
"_type" : "_doc",
"_id" : "6755",
"_score" : 1.0,
"_source" : { }
},
{
"text" : "Bubble",
"_index" : "movies",
"_type" : "_doc",
"_id" : "38188",
"_score" : 1.0,
"_source" : { }
},
{
"text" : "Bubble Boy",
"_index" : "movies",
"_type" : "_doc",
"_id" : "4732",
"_score" : 1.0,
"_source" : { }
},
{
"text" : "Bubble, The",
"_index" : "movies",
"_type" : "_doc",
"_id" : "55132",
"_score" : 1.0,
"_source" : { }
},
{
"text" : "Bubblegum",
"_index" : "movies",
"_type" : "_doc",
"_id" : "188595",
"_score" : 1.0,
"_source" : { }
},
{
"text" : "Bubblegum and Broken Fingers",
"_index" : "movies",
"_type" : "_doc",
"_id" : "162072",
"_score" : 1.0,
"_source" : { }
},
{
"text" : "Bubu",
"_index" : "movies",
"_type" : "_doc",
"_id" : "143753",
"_score" : 1.0,
"_source" : { }
},
{
"text" : "Buccaneer, The",
"_index" : "movies",
"_type" : "_doc",
"_id" : "75994",
"_score" : 1.0,
"_source" : { }
},
{
"text" : "Buchanan Rides Alone",
"_index" : "movies",
"_type" : "_doc",
"_id" : "82298",
"_score" : 1.0,
"_source" : { }
}
]
}
]
}
}
skip_duplicates: 表示忽略掉重复。
size: 表示返回多少条数据。
3.4 高亮显示
高亮显示在实际的应用中也会碰到很多,如下给出了百度和极客时间的两个高亮搜索的案例:
#将title和genre中所有的romance进行高亮显示
GET movies/_search
{
"query": {
"multi_match": {
"query": "romance",
"fields": ["title", "genre"]
}
},
"highlight": {
"pre_tags": "<span>",
"post_tags": "</span>",
"fields": {
"title": {},
"genre": {
"pre_tags": "<em>",
"post_tags": "</em>"
}
}
}
}
{
"took" : 77,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 7428,
"relation" : "eq"
},
"max_score" : 9.80649,
"hits" : [
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "2894",
"_score" : 9.80649,
"_source" : {
"year" : 1999,
"id" : "2894",
"@version" : "1",
"genre" : [
"Drama",
"Romance"
],
"title" : "Romance"
},
"highlight" : {
"genre" : [
"<em>Romance</em>"
],
"title" : [
"<span>Romance</span>"
]
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "116867",
"_score" : 9.80649,
"_source" : {
"year" : 1930,
"id" : "116867",
"@version" : "1",
"genre" : [
"Drama",
"Romance"
],
"title" : "Romance"
},
"highlight" : {
"genre" : [
"<em>Romance</em>"
],
"title" : [
"<span>Romance</span>"
]
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "124991",
"_score" : 9.80649,
"_source" : {
"year" : 2008,
"id" : "124991",
"@version" : "1",
"genre" : [
"Romance"
],
"title" : "Romance"
},
"highlight" : {
"genre" : [
"<em>Romance</em>"
],
"title" : [
"<span>Romance</span>"
]
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "3501",
"_score" : 8.259426,
"_source" : {
"year" : 1985,
"id" : "3501",
"@version" : "1",
"genre" : [
"Comedy",
"Romance"
],
"title" : "Murphy's Romance"
},
"highlight" : {
"genre" : [
"<em>Romance</em>"
],
"title" : [
"Murphy's <span>Romance</span>"
]
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "555",
"_score" : 8.259426,
"_source" : {
"year" : 1993,
"id" : "555",
"@version" : "1",
"genre" : [
"Crime",
"Thriller"
],
"title" : "True Romance"
},
"highlight" : {
"title" : [
"True <span>Romance</span>"
]
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "40342",
"_score" : 8.259426,
"_source" : {
"year" : 2005,
"id" : "40342",
"@version" : "1",
"genre" : [
"Comedy",
"Drama",
"Musical",
"Romance"
],
"title" : "Romance & Cigarettes"
},
"highlight" : {
"genre" : [
"<em>Romance</em>"
],
"title" : [
"<span>Romance</span> & Cigarettes"
]
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "149446",
"_score" : 8.259426,
"_source" : {
"year" : 2010,
"id" : "149446",
"@version" : "1",
"genre" : [
"Comedy",
"Drama"
],
"title" : "Petty Romance"
},
"highlight" : {
"title" : [
"Petty <span>Romance</span>"
]
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "150016",
"_score" : 8.259426,
"_source" : {
"year" : 2012,
"id" : "150016",
"@version" : "1",
"genre" : [
"Comedy",
"Drama"
],
"title" : "Brasserie Romance"
},
"highlight" : {
"title" : [
"Brasserie <span>Romance</span>"
]
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "133712",
"_score" : 8.259426,
"_source" : {
"year" : 1977,
"id" : "133712",
"@version" : "1",
"genre" : [
"Comedy",
"Romance"
],
"title" : "Office Romance"
},
"highlight" : {
"genre" : [
"<em>Romance</em>"
],
"title" : [
"Office <span>Romance</span>"
]
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "5769",
"_score" : 8.259426,
"_source" : {
"year" : 1981,
"id" : "5769",
"@version" : "1",
"genre" : [
"Comedy",
"Romance"
],
"title" : "Modern Romance"
},
"highlight" : {
"genre" : [
"<em>Romance</em>"
],
"title" : [
"Modern <span>Romance</span>"
]
}
}
]
}
}
#查询2012年电影的名字中包含romance的电影,将title中romance进行高亮显示,同时将这些电影中genre包含Children单纯进行高亮显示
GET movies/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"year": "2012"
}
},
{
"match": {
"title": "romance"
}
}
]
}
},
"highlight": {
"fields": {
"title": {},
"genre": {
"pre_tags": "<span>",
"post_tags": "</span>",
"highlight_query": {
"match": {
"genre": "Children"
}
}
}
}
}
}
{
"took" : 9,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 9.259426,
"hits" : [
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "150016",
"_score" : 9.259426,
"_source" : {
"year" : 2012,
"id" : "150016",
"@version" : "1",
"genre" : [
"Comedy",
"Drama"
],
"title" : "Brasserie Romance"
},
"highlight" : {
"title" : [
"Brasserie <em>Romance</em>"
]
}
},
{
"_index" : "movies",
"_type" : "_doc",
"_id" : "158946",
"_score" : 7.2784586,
"_source" : {
"year" : 2012,
"id" : "158946",
"@version" : "1",
"genre" : [
"Children",
"Romance"
],
"title" : "A Taste of Romance"
},
"highlight" : {
"genre" : [
"<span>Children</span>"
],
"title" : [
"A Taste of <em>Romance</em>"
]
}
}
]
}
}
四、分词器安装
4.1 ik分词器
4.1.1 下载
4.1.2 安装
IK分词器在任何操作系统下安装步骤均⼀样: 在ES的家⽬录下的 plugins ⽬录下创建名为 ik 的 ⽂件夹,然后将下载后的 zip 包拷⻉到 ik 解压即可
IK分词器提供了两种分词⽅式:
分词器名称 | 说明 |
---|---|
ik_smart | 会做最粗粒度的拆分,⽐如会将“中华⼈⺠共和国国歌”拆分为“中华⼈⺠共和国,国 歌”,适合 Phrase 查询 |
ik_max_word | 会将⽂本做最细粒度的拆分,⽐如会将“中华⼈⺠共和国国歌”拆分为“中华⼈⺠共 和国,中华⼈⺠,中华,华⼈,⼈⺠共和国,⼈⺠,⼈,⺠,共和国,共和,和,国国,国歌”,会穷 尽各种可能的组合,适合 Term Query; |
4.1.3 验证
standard分词器处理不了中文
GET _analyze
{
"analyzer": "standard",
"text": "教育"
}
{
"tokens" : [
{
"token" : "教",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<IDEOGRAPHIC>",
"position" : 0
},
{
"token" : "育",
"start_offset" : 1,
"end_offset" : 2,
"type" : "<IDEOGRAPHIC>",
"position" : 1
}
]
}
使⽤ ik_smart 分词器
GET _analyze
{
"analyzer": "ik_smart",
"text": "教育"
}
{
"tokens" : [
{
"token" : "教育",
"start_offset" : 0,
"end_offset" : 2,
"type" : "CN_WORD",
"position" : 0
}
]
}
GET _analyze
{
"analyzer": "ik_smart",
"text": "中华人民共和国"
}
{
"tokens" : [
{
"token" : "中华人民共和国",
"start_offset" : 0,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 0
}
]
}
使⽤ ik_max_word 分词器
GET _analyze
{
"analyzer": "ik_max_word",
"text": "中华人民共和国"
}
{
"tokens" : [
{
"token" : "中华人民共和国",
"start_offset" : 0,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "中华人民",
"start_offset" : 0,
"end_offset" : 4,
"type" : "CN_WORD",
"position" : 1
},
{
"token" : "中华",
"start_offset" : 0,
"end_offset" : 2,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "华人",
"start_offset" : 1,
"end_offset" : 3,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "人民共和国",
"start_offset" : 2,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 4
},
{
"token" : "人民",
"start_offset" : 2,
"end_offset" : 4,
"type" : "CN_WORD",
"position" : 5
},
{
"token" : "共和国",
"start_offset" : 4,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 6
},
{
"token" : "共和",
"start_offset" : 4,
"end_offset" : 6,
"type" : "CN_WORD",
"position" : 7
},
{
"token" : "国",
"start_offset" : 6,
"end_offset" : 7,
"type" : "CN_CHAR",
"position" : 8
}
]
}
4.1.4 ⾃定义词库
在很多的时候,业务上的⼀些词库极有可能不在IK分词器的词库中,需要去定制属于我们⾃⼰的词 库。例如下⾯的例⼦中,
正井猫
、up主
被切分为⼀个个的字,我们希望这两个词语是不被拆 分;另外的
作为中⽂的停顿词,也不希望出现在分词中,所以我们需要⾃定义词库和停顿词词库。
GET _analyze
{
"analyzer": "ik_smart",
"text": "请关注正井猫up主,你们的支持是我坚持的动力。"
}
{
"tokens" : [
{
"token" : "请",
"start_offset" : 0,
"end_offset" : 1,
"type" : "CN_CHAR",
"position" : 0
},
{
"token" : "关注",
"start_offset" : 1,
"end_offset" : 3,
"type" : "CN_WORD",
"position" : 1
},
{
"token" : "正",
"start_offset" : 3,
"end_offset" : 4,
"type" : "CN_CHAR",
"position" : 2
},
{
"token" : "井",
"start_offset" : 4,
"end_offset" : 5,
"type" : "CN_CHAR",
"position" : 3
},
{
"token" : "猫",
"start_offset" : 5,
"end_offset" : 6,
"type" : "CN_CHAR",
"position" : 4
},
{
"token" : "up",
"start_offset" : 6,
"end_offset" : 8,
"type" : "ENGLISH",
"position" : 5
},
{
"token" : "主",
"start_offset" : 8,
"end_offset" : 9,
"type" : "CN_CHAR",
"position" : 6
},
{
"token" : "你们",
"start_offset" : 10,
"end_offset" : 12,
"type" : "CN_WORD",
"position" : 7
},
{
"token" : "的",
"start_offset" : 12,
"end_offset" : 13,
"type" : "CN_CHAR",
"position" : 8
},
{
"token" : "支持",
"start_offset" : 13,
"end_offset" : 15,
"type" : "CN_WORD",
"position" : 9
},
{
"token" : "是",
"start_offset" : 15,
"end_offset" : 16,
"type" : "CN_CHAR",
"position" : 10
},
{
"token" : "我",
"start_offset" : 16,
"end_offset" : 17,
"type" : "CN_CHAR",
"position" : 11
},
{
"token" : "坚持",
"start_offset" : 17,
"end_offset" : 19,
"type" : "CN_WORD",
"position" : 12
},
{
"token" : "的",
"start_offset" : 19,
"end_offset" : 20,
"type" : "CN_CHAR",
"position" : 13
},
{
"token" : "动力",
"start_offset" : 20,
"end_offset" : 22,
"type" : "CN_WORD",
"position" : 14
}
]
}
进⼊到 $ES_HOME/plugins/ik/config ⽬录下,创建 custom ⽬录,在⽬录下创建 mydic.dic 、 ext_stopword.dic ⽂件。(文件名可以自定义,但必须是.dic文件)
在 mydic.dic ⽂件中添加两⾏内容:
正井猫
up主
在 ext_stopword.dic 中添加⼀⾏内容:
的
是
最后修改 $ES_HOME/plugins/ik/config/IKAnalyzer.cfg.xml ⽂件,内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict">custom/mydic.dic</entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords">custom/ext_stopword.dic</entry>
<!--用户可以在这里配置远程扩展字典 -->
<!-- <entry key="remote_ext_dict">words_location</entry> -->
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>
启重启elasticsearch elasticsearch , 重新执⾏如上的命令,结果如下:
GET _analyze
{
"analyzer": "ik_smart",
"text": "请关注正井猫up主,你们的支持是我坚持的动力。"
}
{
"tokens" : [
{
"token" : "请",
"start_offset" : 0,
"end_offset" : 1,
"type" : "CN_CHAR",
"position" : 0
},
{
"token" : "关注",
"start_offset" : 1,
"end_offset" : 3,
"type" : "CN_WORD",
"position" : 1
},
{
"token" : "正井猫",
"start_offset" : 3,
"end_offset" : 6,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "up主",
"start_offset" : 6,
"end_offset" : 9,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "你们",
"start_offset" : 10,
"end_offset" : 12,
"type" : "CN_WORD",
"position" : 4
},
{
"token" : "支持",
"start_offset" : 13,
"end_offset" : 15,
"type" : "CN_WORD",
"position" : 5
},
{
"token" : "我",
"start_offset" : 16,
"end_offset" : 17,
"type" : "CN_CHAR",
"position" : 6
},
{
"token" : "坚持",
"start_offset" : 17,
"end_offset" : 19,
"type" : "CN_WORD",
"position" : 7
},
{
"token" : "动力",
"start_offset" : 20,
"end_offset" : 22,
"type" : "CN_WORD",
"position" : 8
}
]
}
GET _analyze
{
"analyzer": "ik_max_word",
"text": "请关注正井猫up主,你们的支持是我坚持的动力。"
}
{
"tokens" : [
{
"token" : "请",
"start_offset" : 0,
"end_offset" : 1,
"type" : "CN_CHAR",
"position" : 0
},
{
"token" : "关注",
"start_offset" : 1,
"end_offset" : 3,
"type" : "CN_WORD",
"position" : 1
},
{
"token" : "正井猫",
"start_offset" : 3,
"end_offset" : 6,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "up主",
"start_offset" : 6,
"end_offset" : 9,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "up",
"start_offset" : 6,
"end_offset" : 8,
"type" : "ENGLISH",
"position" : 4
},
{
"token" : "主",
"start_offset" : 8,
"end_offset" : 9,
"type" : "CN_CHAR",
"position" : 5
},
{
"token" : "你们",
"start_offset" : 10,
"end_offset" : 12,
"type" : "CN_WORD",
"position" : 6
},
{
"token" : "支持",
"start_offset" : 13,
"end_offset" : 15,
"type" : "CN_WORD",
"position" : 7
},
{
"token" : "我",
"start_offset" : 16,
"end_offset" : 17,
"type" : "CN_CHAR",
"position" : 8
},
{
"token" : "坚持",
"start_offset" : 17,
"end_offset" : 19,
"type" : "CN_WORD",
"position" : 9
},
{
"token" : "动力",
"start_offset" : 20,
"end_offset" : 22,
"type" : "CN_WORD",
"position" : 10
}
]
}
4.1.5 创建mapping指定分词器(不指定默认standard),analyzer是指定索引进es时用的分词器,search_analyzer是指定搜索时指定的分词器
PUT news
{
"mappings": {
"properties": {
"title": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_smart"
},
"content": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_smart"
}
}
}
}
自定义分词器后,已有的数据还可以重新分词索引(POST news/_update_by_query)
4.2 pinyin分词器
4.2.1 下载
下载地址:https://github.com/medcl/elasticsearch-analysis-pinyin/releases
4.2.2 安装
pinyin 分词器在任何操作系统下安装步骤均⼀样: 在ES的家⽬录下的
plugins
⽬录下创建名为pinyin
的⽂件夹,然后将下载后的 zip 包拷⻉到pinyin
解压即可
4.2.3 验证
执⾏如下命令:
GET _analyze
{
"analyzer": "pinyin",
"text": "正井猫"
}
4.3 ⾃定义分词器以及应⽤
对于 <p>刘德华</p> ,现在想要得到如下的分词结果
{
"tokens": [
{
"token": "刘德华",
"start_offset": 0,
"end_offset": 3,
"type": "word",
"position": 0
},
{
"token": "liudehua",
"start_offset": 0,
"end_offset": 3,
"type": "word",
"position": 0
},
{
"token": "ldh",
"start_offset": 0,
"end_offset": 3,
"type": "word",
"position": 0
}
]
}
4.3.1 设置分词器
PUT test
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"char_filter": [
"html_strip"
],
"tokenizer": "keyword",
"filter": "my_pinyin_filter"
}
},
"filter": {
"my_pinyin_filter": {
"type": "pinyin",
"keep_first_letter": true,
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"keep_none_chinese": false,
"keep_none_chinese_in_joined_full_pinyin": true
}
}
}
}
}
4.3.2 验证分词器效果
GET test/_analyze
{
"analyzer": "my_analyzer",
"text": ["刘德华"]
}
4.3.3 为属性添加分词器
设定
mappings
信息,指定索引test
的name
属性的analyzer
⾃定义的分词器。
PUT test/_mapping
{
"properties": {
"name": {
"type": "completion",
"analyzer": "my_analyzer"
}
}
}
4.3.4 结果验证
实现效果
执⾏如下命令添加数据
POST test/_bulk
{"index": {}}
{"name": "刘德华"}
{"index": {}}
{"name": "张学友"}
{"index": {}}
{"name": "柳岩"}
执⾏前缀建议语句
通过如上最后⼀个结果⼤家仔细去理解《 通过如上最后⼀个结果⼤家仔细去理解《Elasticsearch Elasticsearch教程教程((⼀⼀))》中,第 》中,第55节的开始标红的 节的开始标红的 那句话。 那句话。
五、MySQL数据导⼊到ES
将MySQL的初始化数据导⼊到ES的⽅式可以通过程序的⽅式和⼯具的⽅式。本教程使⽤ Logstash 来初始化导⼊。⾸先将 MySQL 的驱动包拷⻉到 $logStash/logstashcore/lib/jars/ ⽬录下;在 $logstash/config/ ⽬录下创建名为 logstash-mysqlnews.conf 的⽂件,⽂件内容如下:
input {
jdbc {
jdbc_driver_class => "com.mysql.cj.jdbc.Driver"
jdbc_connection_string => "jdbc:mysql://localhost:3306/es?
useSSL=false&serverTimezone=UTC"
jdbc_user => root
jdbc_password => "123456"
#启⽤追踪,如果为true,则需要指定tracking_column
use_column_value => true
#指定追踪的字段,
tracking_column => id
#追踪字段的类型,⽬前只有数字(numeric)和时间类型(timestamp),默认是数字类型
tracking_column_type => "numeric"
#记录最后⼀次运⾏的结果
record_last_run => true
#上⾯运⾏结果的保存位置
last_run_metadata_path => "mysql-position.txt"
statement => "SELECT * FROM news where id > :sql_last_value"
schedule => "* * * * * *"
}
}
filter {
mutate {
split => { "tags" => ","}
}
}
output {
elasticsearch {
document_id => "%{id}"
document_type => "_doc"
index => "news"
hosts => ["http://localhost:9200"]
}
stdout{
codec => rubydebug
}
}
六、视频/博客/项目引用
1.Elasticsearch(7.8.1)沥血之作(包含仿百度搜索案例)_哔哩哔哩_bilibili
2.kiramie/elasticsearch-demo1 (gitee.com)
3.kiramie/elasticsearch-demo2 (gitee.com)