[CF189A]Cut Ribbon(完全背包,DP)

题目链接:http://codeforces.com/problemset/problem/189/A

题意:给你长为n的绳子,每次只允许切a,b,c三种长度的段,问最多能切多少段。注意每一段都得是a,b,c中长度的一种。

解法:这个题可以看作是完全背包,但是由于切割长度有限制,所以要做一些调整。我们初始化dp(i)为长度为i时的最优解。一开始dp(a)=dp(b)=dp(c)=1是显而易见的,我们转移的起点也是这里。我们不希望枚举到不符合条件的情况,所以多一步判断:dp[j-w[i]] != 0

 1 /*
 2 ━━━━━┒ギリギリ♂ eye!
 3 ┓┏┓┏┓┃キリキリ♂ mind!
 4 ┛┗┛┗┛┃\○/
 5 ┓┏┓┏┓┃ /
 6 ┛┗┛┗┛┃ノ)
 7 ┓┏┓┏┓┃
 8 ┛┗┛┗┛┃
 9 ┓┏┓┏┓┃
10 ┛┗┛┗┛┃
11 ┓┏┓┏┓┃
12 ┛┗┛┗┛┃
13 ┓┏┓┏┓┃
14 ┃┃┃┃┃┃
15 ┻┻┻┻┻┻
16 */
17 #include <algorithm>
18 #include <iostream>
19 #include <iomanip>
20 #include <cstring>
21 #include <climits>
22 #include <complex>
23 #include <cassert>
24 #include <cstdio>
25 #include <bitset>
26 #include <vector>
27 #include <deque>
28 #include <queue>
29 #include <stack>
30 #include <ctime>
31 #include <set>
32 #include <map>
33 #include <cmath>
34 using namespace std;
35 #define fr first
36 #define sc second
37 #define cl clear
38 #define BUG puts("here!!!")
39 #define W(a) while(a--)
40 #define pb(a) push_back(a)
41 #define Rint(a) scanf("%d", &a)
42 #define Rll(a) scanf("%I64d", &a)
43 #define Rs(a) scanf("%s", a)
44 #define Cin(a) cin >> a
45 #define FRead() freopen("in", "r", stdin)
46 #define FWrite() freopen("out", "w", stdout)
47 #define Rep(i, len) for(LL i = 0; i < (len); i++)
48 #define For(i, a, len) for(LL i = (a); i < (len); i++)
49 #define Cls(a) memset((a), 0, sizeof(a))
50 #define Clr(a, x) memset((a), (x), sizeof(a))
51 #define Fuint(a) memset((a), 0x7f7f, sizeof(a))
52 #define lrt rt << 1
53 #define rrt rt << 1 | 1
54 #define pi 3.14159265359
55 #define RT return
56 #define lowbit(x) x & (-x)
57 #define onenum(x) __builtin_popcount(x)
58 typedef long long LL;
59 typedef long double LD;
60 typedef unsigned long long Uint;
61 typedef pair<LL, LL> pii;
62 typedef pair<string, LL> psi;
63 typedef map<string, LL> msi;
64 typedef vector<LL> vi;
65 typedef vector<LL> vl;
66 typedef vector<vl> vvl;
67 typedef vector<bool> vb;
68 
69 const int maxn = 4040;
70 int dp[maxn];
71 int n;
72 int w[5];
73 
74 int main() {
75     // FRead();
76     Cls(dp);
77     Rint(n);
78     For(i, 1, 4) {
79         Rint(w[i]);
80         dp[w[i]] = 1;
81     }
82     For(i, 1, 4) {
83         For(j, w[i], n+1) {
84             bool flag = 1;
85             if(dp[j-w[i]]) {
86                 dp[j] = max(dp[j], dp[j-w[i]]+1);
87             }
88         }
89     }
90     printf("%d\n", dp[n]);
91     RT 0;
92 }

 

posted @ 2016-06-30 10:21  Kirai  阅读(327)  评论(0编辑  收藏  举报