opencv实现KNN手写数字的识别

  人工智能是当下很热门的话题,手写识别是一个典型的应用。为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务。

  预处理一张图片:

  首先采用opencv读取图片的构造函数读取灰度的图片,再采用大津法求出图片的二值化的阈值,并且将图片二值化。

 1 int otsu(const IplImage* src_image) {
 2     double sum = 0.0;
 3     double w0 = 0.0;
 4     double w1 = 0.0;
 5     double u0_temp = 0.0;
 6     double u1_temp = 0.0;
 7     double u0 = 0.0;
 8     double u1 = 0.0;
 9     double delta_temp = 0.0;
10     double delta_max = 0.0;
11 
12     int pixel_count[256] = { 0 };
13     float pixel_pro[256] = { 0 };
14     int threshold = 0;
15     uchar* data = (uchar*)src_image->imageData;
16     for (int i = 0; i < src_image->height; i++) {
17         for (int j = 0; j < src_image->width; j++) {
18             pixel_count[(int)data[i * src_image->width + j]]++;
19             sum += (int)data[i * src_image->width + j];
20         }
21     }
22     for (int i = 0; i < 256; i++) {
23         pixel_pro[i] = (float)pixel_count[i] / (src_image->height * src_image->width);
24     }
25     for (int i = 0; i < 256; i++) {
26         w0 = w1 = u0_temp = u1_temp = u0 = u1 = delta_temp = 0;
27         for (int j = 0; j < 256; j++) {
28             if (j <= i) {
29                 w0 += pixel_pro[j];
30                 u0_temp += j * pixel_pro[j];
31             }
32             else {
33                 w1 += pixel_pro[j];
34                 u1_temp += j * pixel_pro[j];
35             }
36         }
37         u0 = u0_temp / w0;
38         u1 = u1_temp / w1;
39         delta_temp = (float)(w0 *w1* pow((u0 - u1), 2));
40         if (delta_temp > delta_max) {
41             delta_max = delta_temp;
42             threshold = i;
43         }
44     }
45     return threshold;
46 }
大津法
 1 void imageBinarization(IplImage* src_image) {
 2     IplImage* binImg = cvCreateImage(cvGetSize(src_image), src_image->depth, src_image->nChannels);
 3     CvScalar s;
 4     int ave = 0;
 5     int binThreshold = otsu(src_image);
 6 
 7     for (int i = 0; i < src_image->height; i++) {
 8         for (int j = 0; j < src_image->width; j++) {
 9             s = cvGet2D(src_image, i, j);
10             ave = (s.val[0] + s.val[1] + s.val[2]) / 3;
11             if (ave < binThreshold) {
12                 s.val[0] = s.val[1] = s.val[2] = 0xff;
13                 cvSet2D(src_image, i, j, s);
14             }
15             else {
16                 s.val[0] = s.val[1] = s.val[2] = 0x00;
17                 cvSet2D(src_image, i, j, s);
18             }
19         }
20     }
21     cvCopy(src_image, binImg);
22     cvSaveImage(bined, binImg);
23     //cvShowImage("binarization", binImg);
24     //waitKey(0);
25 }
二值化

  由于是只进行简单的识别模拟,因此没有做像素断点的处理。获取minst提供的数据集,提取每个图片的hog特征,参数如下:

1 HOGDescriptor *hog = new HOGDescriptor(
2             cvSize(ImgWidht, ImgHeight), cvSize(14, 14), cvSize(7, 7), cvSize(7, 7), 9);

  (9个方向换成18个可能会取得更准确的结果,这取决于对图片本身的复杂程度的分析

  之后即可训练knn分类器,进行分类了。

 1 void knnTrain() {
 2 #ifdef SAVETRAINED
 3     //knn training;
 4     samples.clear();
 5     dat_mat = Mat::zeros(10 * nImgNum, 324, CV_32FC1);
 6     res_mat = Mat::zeros(10 * nImgNum, 1, CV_32FC1);
 7     for (int i = 0; i != 10; i++) {
 8         getFile(dirNames[i], i);
 9     }
10     preTrain();
11     cout << "------ Training finished. -----" << endl << endl;
12     knn.train(dat_mat, res_mat, Mat(), false, 2);
13 
14 #ifdef SAVEASXML
15     knn.save("./trained/knnTrained.xml");
16 #endif
17 
18 #else
19     knn.load("./trained/knnTrained.xml");
20 #endif
21 
22     //knn test
23     cout << endl << "--- KNN test mode : ---" << endl;
24     int tCnt = 10000;
25     int tAc = 0;
26     selfknnTest(tCnt, tAc);
27 
28     cout << endl << endl << "Total number of test samples : " << tCnt << endl;
29 
30     cout << "Accuracy : " << float(float(tAc) / float(tCnt)) * 100 << "%" << endl;
31 }
train

  训练结果如下,准确率还是很令人满意的。

posted @ 2016-04-01 19:02  Kirai  阅读(2038)  评论(0编辑  收藏  举报