并发编程 - ConcurrentHashMap源码
JDK 1.8中,CHM采用Node数组 + 链表/红黑树(避免hash冲突)。
- 细化锁 - 1.8中,只对数组元素进行加锁,进一步避免冲突(1.7中为分段锁的设计)
- 纳入红黑树的实现,当链表长度>=8(且Map.size>=64)时,会将链表转换为红黑树(查询效率 log(n))
put
- tip 1 : CHM中数组元素只在使用时才进行初始化
- tip 2 : 对于为空的单元格,采用cas直接设值(无需锁定)
- tip 3 : 发生线程冲突时,sync锁住单元格中数据结构的头节点,(根据Node节点类型进行链表/树操作)
- tip 4 : CHM中的扩容,采用了分组的思想,通过标志位的控制,允许多个线程并发参与transfer
- tip 5 : CHM中的size记录,也采用了分组的思想,baseCount + sum(CounterCell[]),避免对单一属性修改的并发问题
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
// MAP 1 : 计算hash值,高低位相与,增强散列度(低位 ^ 高位>>>16) & 0x7fffffff 保证结果一定为正数
int hash = spread(key.hashCode());
int binCount = 0; // 记录链表长度,用于链表与树的转换
for (Node<K,V>[] tab = table;;) { // 自旋
Node<K,V> f; int n, i, fh;
// MAP 2 - tip :初始化tab数组
if (tab == null || (n = tab.length) == 0)
tab = initTable();
// tip :如果对应下标内容为空,cas插入值 -- (n-1)&hash,index取决于hash的后log(n)位
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// MAP 3 :线程辅助扩容 fh,节点标志位,用于区分节点当前类型(-1 - 扩容中,>0 链表,-2 树...)
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
// MAP 4 :插入,但存在hash冲突,需加锁保证线程安全(只锁Node节点),并记录链表长度binCount,大于8时触发树转
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
// tip : 链表结构插入 - 通过f.hash的值表示当前节点的状态,-1 扩容 -2 树 正数 普通链表节点
if (fh >= 0) {
binCount = 1;
// 查找是否存在相等的值,是则替换
for (Node<K,V> e = f;; ++binCount) {
K ek;
// key相等,覆盖
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
// key均不相等,新建节点,并置于链表末端
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// tip :树结构插入
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
// 如果已存在则替换值,否则插入
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
// MAP 5 :链表转红黑树
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
// MAP : 计数值加一(分段式增加) - 可能触发扩容操作
addCount(1L, binCount);
return null;
}
initTable
通过CAS + 占位符完成并发控制
// 初始化Table,标志位 sizeCtl:-1 正在初始化 -N 存在多个线程参与扩容 正数 下一次扩容阈值
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
// 当table为空,未被初始化时进入初始化逻辑
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield(); // 其他线程获取了sizeCtl标志,则当前线程释放cpu时间片
// MAP :采用sizeCtl标志位进行初始化并发控制,采用CAS实现线程安全 -- 初始化完成后,设置扩容阈值sizeCtl(75%)
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { // 线程CAS抢占初始化资格
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
addCount
如果对baseCount的修改发生并发争抢,则随机获取CounterCells数组中的某个元素,并修改元素中的值(分组思想)
// baseCount - 基础计数值
// CounterCell - 分段计数组
// size = baseCount + CounterCell.sum();
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
// tip 1: 如果直接修改baseCount成功,则不进入if代码块
// 否则,随机增加CounterCell中某一个Cell的值
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
// tip 2:修改baseCount失败,进入修改CounterCell逻辑
CounterCell a; long v; int m;
boolean uncontended = true;
// tip 2:获取随机数,CAS修改对应下标位的值,如果成功,则不进入代码块
// 否则,fullAddCount
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
// tip 3:如果①数组未初始化,②对应位置的对象未创建,③对应位置存在并发冲突,则
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
// size 大于 扩容阈值
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
// sc < 0,表示当前已有线程处于扩容,尝试辅助扩容
if (sc < 0) {
// 无需参与扩容
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// 协助扩容(参与扩容,执行扩容线程加一)
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 第一次扩容(sc,高位为扩容标记,低位为参与扩容的线程数量)
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
private final void fullAddCount(long x, boolean wasUncontended) {
int h;
if ((h = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit(); // force initialization
h = ThreadLocalRandom.getProbe();
wasUncontended = true;
}
boolean collide = false; // True if last slot nonempty
for (;;) {
CounterCell[] as; CounterCell a; int n; long v;
// 已初始化
if ((as = counterCells) != null && (n = as.length) > 0) {
// 数组中对应下标位置未赋值
if ((a = as[(n - 1) & h]) == null) {
// 构建CounterCell对象,并赋值
if (cellsBusy == 0) { // Try to attach new Cell
CounterCell r = new CounterCell(x); // Optimistic create
if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { // 抢占CounterCell对象构建资格
boolean created = false;
try { // Recheck under lock
CounterCell[] rs; int m, j;
if ((rs = counterCells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally {
cellsBusy = 0;
}
if (created)
break;
continue; // Slot is now non-empty
}
}
collide = false;
}
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) // cas尝试设置值
break;
else if (counterCells != as || n >= NCPU) // 数组长度大于cpu核心数时,不再扩容
collide = false;
else if (!collide)
collide = true;
// 更新counterCells中元素失败,最终触发counterCells扩容操作
else if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
try {
if (counterCells == as) {// Expand table unless stale
CounterCell[] rs = new CounterCell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
counterCells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
// 当发生线程争用后,改变ThreadLocalRandom的probe
h = ThreadLocalRandom.advanceProbe(h);
}
// 未初始化 - cellsBusy 扩容占位符,初始化后数组长度为2,同时完成size add操作
else if (cellsBusy == 0 && counterCells == as &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean init = false;
try { // Initialize table
if (counterCells == as) {
CounterCell[] rs = new CounterCell[2];
rs[h & 1] = new CounterCell(x);
counterCells = rs;
init = true;
}
} finally {
cellsBusy = 0;
}
if (init)
break;
}
// 再次尝试 BASECOUNT (优化 - 多次尝试)
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
break; // Fall back on using base
}
}
transfer
扩容,分组扩容,根据cpu和size大小,计算出每一参与线程负责的node数量与范围
高低位指针,CHM中node数组的大小一定为2的幂,扩容时,node节点的数据只会分流到i或n+i,只需判断对应位置的bit值即可实现分流
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
// tip : 通过cpu核心数计算出单个线程处理的node数
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
// nextTab未初始化,则新建一个nextTab,(容量乘2)
if (nextTab == null) {
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n; // 需要转移的节点个数
}
int nextn = nextTab.length;
// 创建一个fwd节点(Hash = -1 MOVED),用于将当前节点的操作引向nextTab
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true; // 用于控制循环
boolean finishing = false; // 用于判断扩容是否完成
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
// 自旋尝试为当前线程分配transfer任务(获取下标值,边界值和修改TRANSFERINDEX的值) - 处理区间为(nextBound,nextIndex)
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing) // 此处发生了i值的修改,将会导致跳出while循环
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) { // 如果完成了扩容,更新字段,重新设置扩容阈值
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { // 当前线程的任务已经执行完毕,需修改SIZECTL,更新参与线程数量
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true; // 扩容完成
i = n; // recheck before commit
}
}
else if ((f = tabAt(tab, i)) == null) // 对于空位置的处理,直接插入FWD
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED) // MOVED,已经完成了迁移的节点
advance = true; // already processed
else {
synchronized (f) { // 加锁,迁移。
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn; // 高低位指针
if (fh >= 0) {
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
// 用于复用尾部高低位相同的节点(记录,尾部比特位的值,以及等于该比特位值的最前的节点)
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
// 线程通过cas申请到transfer任务,参与扩容即可
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}
treeifyBin
将链表转为红黑树,只要当链表size>=8且map.size>=64时才触发转换,否则触发扩容
CHM中使用了TreeBin对象处理红黑树的操作细节,实现对TreeNode的管理。
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
// 数组长度小于64,则进行扩容
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
tryPresize(n << 1);
// 否则,链表转红黑树
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
// 使用TreeBin容器对象组织TreeNode构建红黑树
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
get
get获取元素:
①为普通节点(链表),则遍历判断获取
②e.hash<0,则可能为TreeBin或FWD,调用e.find()方法
对于FWD对象,会进入NextTable中查找对应元素的值(扩容不影响get操作)
public V get(Object key) {
//tab:当前散列表
//e:当前元素
//p:目标节点
//n:table数组长度
//eh:e的hash值
//ek:当前元素的key
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
//高十六位参与运算
int h = spread(key.hashCode());
//条件一:true:table不为空
//条件二:key对应的hash值对应在数组的下标位置为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
//CASE1:当前桶位的头节点hash值与查找结点hash值一致
if ((eh = e.hash) == h) {
//hash值一致,判断key是否一致,一致的话就返回对应数据
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//CASE2:-1代表当前元素已经被迁移走了
// -2代表当前元素TreeBin节点,使用find方法进行查询
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
//当前桶位是链表节点,迭代查询
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
// FWD中的find()方法,将会指引到新的table中进行查询
static final class ForwardingNode<K,V> extends Node<K,V> {
final Node<K,V>[] nextTable;
ForwardingNode(Node<K,V>[] tab) {
super(MOVED, null, null, null);
this.nextTable = tab;
}
Node<K,V> find(int h, Object k) {
// loop to avoid arbitrarily deep recursion on forwarding nodes
outer: for (Node<K,V>[] tab = nextTable;;) {
//e:表示在扩容创建的新表使用寻址算法得到的桶位头接待你
//n:表示新表的长度
Node<K,V> e; int n;
//新扩容表中重新定位的的头节点为空
if (k == null || tab == null || (n = tab.length) == 0 ||
(e = tabAt(tab, (n - 1) & h)) == null)
return null;
//自旋
for (;;) {
//eh:新扩容表指定桶位节点的hash值
//ek:新扩容表指定桶位节点的key值
int eh; K ek;
// 条件成立,表示当前元素是查找的元素,返回即可
if ((eh = e.hash) == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
//eh < 0 1.treeBin 2.FWD节点
if (eh < 0) {
if (e instanceof ForwardingNode) {
tab = ((ForwardingNode<K,V>)e).nextTable;
continue outer;
}
//treeBin的find
else
return e.find(h, k);
}
//链表结构 - 查找到最后一个节点
if ((e = e.next) == null)
return null;
}
}
}
}
推荐参考:ConcurrentHashMap
欢迎疑问、期待评论、感谢指点 -- kiqi,愿同您为友
-- 星河有灿灿,愿与之辉