LFU算法
思路
LFU每个freq对应的集合其实就是个LRU,淘汰K时,会首先选取freq最小的集合,其次选取最久未使用的Key。
更新或者查询时,会将对应的K/V从当前freq提升至freq+1集合的末尾(假如头代表最久未使用)。
插入
查询
代码实现
···
class LFUCache {
private int minFreq; private int capacity; private Map<Integer, Integer> keyToVal; private Map<Integer, Integer> keyToFreq; private Map<Integer, LinkedHashSet<Integer>> freqToKeys; public LFUCache(int capacity) { this.capacity = capacity; this.minFreq = 0; keyToVal = new HashMap<>(); keyToFreq = new HashMap<>(); freqToKeys = new HashMap<>(); } public int get(int key) { if (!keyToVal.containsKey(key)) return -1; increaseFreq(key); return keyToVal.get(key); } public void put(int key, int value) { if (capacity <= 0) return; if (keyToVal.containsKey(key)) { keyToVal.put(key, value); increaseFreq(key); return; } if (keyToVal.size() == capacity) { removeMinKey(); } keyToVal.put(key, value); keyToFreq.put(key, 1); freqToKeys.compute(1, (k, v) -> v == null? new LinkedHashSet<>(): v).add(key); minFreq = 1; } private void increaseFreq(int key) { int freq = keyToFreq.get(key); freqToKeys.get(freq).remove(key); if (freqToKeys.get(freq).isEmpty()) { freqToKeys.remove(freq); if (freq == minFreq) minFreq++; } keyToFreq.put(key, freq + 1); freqToKeys.compute(freq + 1, (k, v) -> v == null? new LinkedHashSet<>(): v).add(key); } private void removeMinKey() { LinkedHashSet<Integer> set = freqToKeys.get(minFreq); int key = set.iterator().next(); set.remove(key); if (set.isEmpty()) { freqToKeys.remove(minFreq); } keyToVal.remove(key); keyToFreq.remove(key); }
}
/**
- Your LFUCache object will be instantiated and called as such:
- LFUCache obj = new LFUCache(capacity);
- int param_1 = obj.get(key);
- obj.put(key,value);
*/
···
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义