Spark垃圾邮件分类(scala+java)

Java程序

import java.util.Arrays;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.mllib.classification.LogisticRegressionModel;

import org.apache.spark.mllib.classification.LogisticRegressionWithSGD;

import org.apache.spark.mllib.feature.HashingTF;

import org.apache.spark.mllib.linalg.Vector;

import org.apache.spark.mllib.regression.LabeledPoint;

/**

 * Created by hui on 2017/11/29.

 */

public class MLlib {

    public static void main(String[] args) {

        SparkConf sparkConf = new SparkConf().setAppName("JavaBookExample").setMaster("local");

        JavaSparkContext sc = new JavaSparkContext(sparkConf);

        // Load 2 types of emails from text files: spam and ham (non-spam).

        // Each line has text from one email.

        JavaRDD<String> spam = sc.textFile("files/spam.txt");

        JavaRDD<String> ham = sc.textFile("files/ham.txt");

        // Create a HashingTF instance to map email text to vectors of 100 features.

        final HashingTF tf = new HashingTF(100);

        // Each email is split into words, and each word is mapped to one feature.

        // Create LabeledPoint datasets for positive (spam) and negative (ham) examples.

        JavaRDD<LabeledPoint> positiveExamples = spam.map(new Function<String, LabeledPoint>() {

            @Override public LabeledPoint call(String email) {

                return new LabeledPoint(1, tf.transform(Arrays.asList(email.split(" "))));

            }

        });

        JavaRDD<LabeledPoint> negativeExamples = ham.map(new Function<String, LabeledPoint>() {

            @Override public LabeledPoint call(String email) {

                return new LabeledPoint(0, tf.transform(Arrays.asList(email.split(" "))));

            }

        });

        JavaRDD<LabeledPoint> trainingData = positiveExamples.union(negativeExamples);

        trainingData.cache(); // Cache data since Logistic Regression is an iterative algorithm.

        // Create a Logistic Regression learner which uses the LBFGS optimizer.

        LogisticRegressionWithSGD lrLearner = new LogisticRegressionWithSGD();

        // Run the actual learning algorithm on the training data.

        LogisticRegressionModel model = lrLearner.run(trainingData.rdd());

        // Test on a positive example (spam) and a negative one (ham).

        // First apply the same HashingTF feature transformation used on the training data.

        Vector posTestExample =

                tf.transform(Arrays.asList("O M G GET cheap stuff by sending money to ...".split(" ")));

        Vector negTestExample =

                tf.transform(Arrays.asList("Hi Dad, I started studying Spark the other ...".split(" ")));

        // Now use the learned model to predict spam/ham for new emails.

        System.out.println("Prediction for positive test example: " + model.predict(posTestExample));

        System.out.println("Prediction for negative test example: " + model.predict(negTestExample));

        sc.stop();

    }

}

Scala程序

import org.apache.spark.mllib.classification.LogisticRegressionWithSGD

import org.apache.spark.mllib.feature.HashingTF

import org.apache.spark.mllib.regression.LabeledPoint

import org.apache.spark.{SparkConf, SparkContext}

/**

  * Created by hui on 2017/11/23.

  */

object email {

  def main(args:Array[String]): Unit = {

    val conf = new SparkConf().setAppName(s"Book example: Scala").setMaster("local")

    val sc = new SparkContext(conf)

    // Load 2 types of emails from text files: spam and ham (non-spam).

    // Each line has text from one email.

    val spam = sc.textFile("files/spam.txt")

    val ham = sc.textFile("files/ham.txt")

    // Create a HashingTF instance to map email text to vectors of 100 features.

    val tf = new HashingTF(numFeatures = 100)

    // Each email is split into words, and each word is mapped to one feature.

    val spamFeatures = spam.map(email => tf.transform(email.split(" ")))

    val hamFeatures = ham.map(email => tf.transform(email.split(" ")))

    // Create LabeledPoint datasets for positive (spam) and negative (ham) examples.

    val positiveExamples = spamFeatures.map(features => LabeledPoint(1, features))

    val negativeExamples = hamFeatures.map(features => LabeledPoint(0, features))

    val trainingData = positiveExamples ++ negativeExamples

    trainingData.cache() // Cache data since Logistic Regression is an iterative algorithm.

    // Create a Logistic Regression learner which uses the LBFGS optimizer.

    val lrLearner = new LogisticRegressionWithSGD()

    // Run the actual learning algorithm on the training data.

    val model = lrLearner.run(trainingData)

    // Test on a positive example (spam) and a negative one (ham).

    // First apply the same HashingTF feature transformation used on the training data.

    val posTestExample = tf.transform("O M G GET cheap stuff by sending money to ...".split(" "))

    val negTestExample = tf.transform("Hi Dad, I started studying Spark the other ...".split(" "))

    // Now use the learned model to predict spam/ham for new emails.

    println(s"Prediction for positive test example: ${model.predict(posTestExample)}")

    println(s"Prediction for negative test example: ${model.predict(negTestExample)}")

    sc.stop()

  }

}

运行结果

posted @ 2017-12-21 22:07  尘世中一个迷途小书童  阅读(932)  评论(0编辑  收藏  举报