Spark常用机器学习算法(scala+java)

kmeans

Scala程序

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}

import org.apache.spark.mllib.linalg.Vectors

/**

  * Created by hui on 2017/11/21.

  * K-means算法

  */

object kmeans {

  def main(args:Array[String]): Unit ={

    val conf= new SparkConf().setAppName("kmeans").setMaster("local")

    val sc = new SparkContext(conf)

    val data=sc.textFile("data/mllib/kmeans_data.txt")

    val parsedData=data.map(s=>Vectors.dense(s.split(' ').map(_.toDouble))).cache()

    val numClusters=2

    val numIterations=20

    val clusters=KMeans.train(parsedData,numClusters,numIterations)

    val WSSSE=clusters.computeCost(parsedData)

    println("Within Set Sum of Squared Errors = " + WSSSE)

    clusters.save(sc,"my_kmeans")

    val sameModel=KMeansModel.load(sc,"my_kmeans")

  }

}

Java程序

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.mllib.clustering.KMeans;

import org.apache.spark.mllib.clustering.KMeansModel;

import org.apache.spark.mllib.linalg.Vector;

import org.apache.spark.mllib.linalg.Vectors;

// $example off$

public class JavaKMeansExample {

  public static void main(String[] args) {

 

    SparkConf conf = new SparkConf().setAppName("JavaKMeansExample").setMaster("local");

    JavaSparkContext jsc = new JavaSparkContext(conf);

    // $example on$

    // Load and parse data

    String path = "data/mllib/kmeans_data.txt";

    JavaRDD<String> data = jsc.textFile(path);

    JavaRDD<Vector> parsedData = data.map(

      new Function<String, Vector>() {

        public Vector call(String s) {

          String[] sarray = s.split(" ");

          double[] values = new double[sarray.length];

          for (int i = 0; i < sarray.length; i++) {

            values[i] = Double.parseDouble(sarray[i]);

          }

          return Vectors.dense(values);

        }

      }

    );

    parsedData.cache();

    // Cluster the data into two classes using KMeans

    int numClusters = 2;

    int numIterations = 20;

    KMeansModel clusters = KMeans.train(parsedData.rdd(), numClusters, numIterations);

    System.out.println("Cluster centers:");

    for (Vector center: clusters.clusterCenters()) {

      System.out.println(" " + center);

    }

    double cost = clusters.computeCost(parsedData.rdd());

    System.out.println("Cost: " + cost);

    // Evaluate clustering by computing Within Set Sum of Squared Errors

    double WSSSE = clusters.computeCost(parsedData.rdd());

    System.out.println("Within Set Sum of Squared Errors = " + WSSSE);

    // Save and load model

    clusters.save(jsc.sc(), "target/org/apache/spark/JavaKMeansExample/KMeansModel");

    KMeansModel sameModel = KMeansModel.load(jsc.sc(),

      "target/org/apache/spark/JavaKMeansExample/KMeansModel");

    // $example off$

    jsc.stop();

  }

}

运行结果

decisiontree

Scala程序

import org.apache.spark.mllib.tree.DecisionTree

import org.apache.spark.mllib.tree.model.DecisionTreeModel

import org.apache.spark.mllib.util.MLUtils

import org.apache.spark.SparkConf

import org.apache.spark.SparkContext

/**

  * Created by hui on 2017/11/21.

  * 使用树深为5的决策树进行分类

  */

object decisiontree {

  def main(args:Array[String]): Unit = {

    val conf = new SparkConf().setAppName("decisiontree").setMaster("local")

    val sc = new SparkContext(conf)

    val data = MLUtils.loadLibSVMFile(sc, "E:\\ideaProjects\\TestBook\\data\\mllib\\sample_libsvm_data.txt")

    val splits = data.randomSplit(Array(0.7, 0.3))

    val (trainingData, testData) = (splits(0), splits(1))

    val numClass = 2

    val categoricalFeaturesInfo = Map[Int, Int]()

    val impurity = "gini"

    val maxDepth = 5

    val maxBins = 32

    val model = DecisionTree.trainClassifier(trainingData, numClass, categoricalFeaturesInfo, impurity, maxDepth, maxBins)

    val labelAndPreds = testData.map { point =>

      val predicition = model.predict(point.features)

      (point.label, predicition)

    }

    val testErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / testData.count()

    println("Test Error=" + testErr)

    println("Learn classification tree model:\n" + model.toDebugString)

    model.save(sc, "my_decisiontree")

    val sameModel = DecisionTreeModel.load(sc, "my_decisiontree")

  }

}

Java程序

import java.util.HashMap;

import java.util.Map;

import scala.Tuple2;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.api.java.function.PairFunction;

import org.apache.spark.mllib.regression.LabeledPoint;

import org.apache.spark.mllib.tree.DecisionTree;

import org.apache.spark.mllib.tree.model.DecisionTreeModel;

import org.apache.spark.mllib.util.MLUtils;

// $example off$

class JavaDecisionTreeClassificationExample {

  public static void main(String[] args) {

    // $example on$

    SparkConf sparkConf = new SparkConf().setAppName("JavaDecisionTreeClassificationExample").setMaster("local");

    JavaSparkContext jsc = new JavaSparkContext(sparkConf);

    // Load and parse the data file.

    String datapath = "data/mllib/sample_libsvm_data.txt";

    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();

    // Split the data into training and test sets (30% held out for testing)

    JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});

    JavaRDD<LabeledPoint> trainingData = splits[0];

    JavaRDD<LabeledPoint> testData = splits[1];

    // Set parameters.

    //  Empty categoricalFeaturesInfo indicates all features are continuous.

    Integer numClasses = 2;

    Map<Integer, Integer> categoricalFeaturesInfo = new HashMap<>();

    String impurity = "gini";

    Integer maxDepth = 5;

    Integer maxBins = 32;

    // Train a DecisionTree model for classification.

    final DecisionTreeModel model = DecisionTree.trainClassifier(trainingData, numClasses,

      categoricalFeaturesInfo, impurity, maxDepth, maxBins);

    // Evaluate model on test instances and compute test error

    JavaPairRDD<Double, Double> predictionAndLabel =

      testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {

        @Override

        public Tuple2<Double, Double> call(LabeledPoint p) {

          return new Tuple2<>(model.predict(p.features()), p.label());

        }

      });

    Double testErr =

      1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {

        @Override

        public Boolean call(Tuple2<Double, Double> pl) {

          return !pl._1().equals(pl._2());

        }

      }).count() / testData.count();

    System.out.println("Test Error: " + testErr);

    System.out.println("Learned classification tree model:\n" + model.toDebugString());

    // Save and load model

    model.save(jsc.sc(), "target/tmp/myDecisionTreeClassificationModel");

    DecisionTreeModel sameModel = DecisionTreeModel

      .load(jsc.sc(), "target/tmp/myDecisionTreeClassificationModel");

    // $example off$

  }

}

运行结果

randforest_classifier

Scala程序

import org.apache.spark.SparkConf

import org.apache.spark.SparkContext

import org.apache.spark.mllib.util.MLUtils

import org.apache.spark.mllib.tree.RandomForest

import org.apache.spark.mllib.tree.model.RandomForestModel

/**

  * Created by hui on 2017/11/21.

  * 使用随机森林进行分类

  */

object randforest_classifier {

  def main(args:Array[String]): Unit = {

    val conf = new SparkConf().setAppName("randforest_classifier").setMaster("local")

    val sc = new SparkContext(conf)

    val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")

    val splits = data.randomSplit(Array(0.7, 0.3))

    val (trainingData, testData) = (splits(0), splits(1))

    val numClass = 2

    val categoricalFeaturesInfo = Map[Int, Int]()

    val numTrees = 3

    val featureSubsetStrategy = "auto"

    val impurity = "gini"

    val maxDepth = 4

    val maxBins = 32

    val model = RandomForest.trainClassifier(trainingData, numClass, categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins)

    val labelAndPreds = testData.map { point =>

      val prediction = model.predict(point.features)

      (point.label, prediction)

    }

    val testErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / testData.count()

    println("Test Error=" + testErr)

    println("Learned classification forest model:\n" + model.toDebugString)

    model.save(sc, "myModelPath")

    val sameModel = RandomForestModel.load(sc, "myModelPath")

  }

}

Java程序

import java.util.HashMap;

import scala.Tuple2;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.api.java.function.PairFunction;

import org.apache.spark.mllib.regression.LabeledPoint;

import org.apache.spark.mllib.tree.RandomForest;

import org.apache.spark.mllib.tree.model.RandomForestModel;

import org.apache.spark.mllib.util.MLUtils;

// $example off$

public class JavaRandomForestClassificationExample {

  public static void main(String[] args) {

    // $example on$

    SparkConf sparkConf = new SparkConf().setAppName("JavaRandomForestClassificationExample").setMaster("local");

    JavaSparkContext jsc = new JavaSparkContext(sparkConf);

    // Load and parse the data file.

    String datapath = "data/mllib/sample_libsvm_data.txt";

    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();

    // Split the data into training and test sets (30% held out for testing)

    JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});

    JavaRDD<LabeledPoint> trainingData = splits[0];

    JavaRDD<LabeledPoint> testData = splits[1];

    // Train a RandomForest model.

    // Empty categoricalFeaturesInfo indicates all features are continuous.

    Integer numClasses = 2;

    HashMap<Integer, Integer> categoricalFeaturesInfo = new HashMap<>();

    Integer numTrees = 3; // Use more in practice.

    String featureSubsetStrategy = "auto"; // Let the algorithm choose.

    String impurity = "gini";

    Integer maxDepth = 5;

    Integer maxBins = 32;

    Integer seed = 12345;

    final RandomForestModel model = RandomForest.trainClassifier(trainingData, numClasses,

      categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins,

      seed);

    // Evaluate model on test instances and compute test error

    JavaPairRDD<Double, Double> predictionAndLabel =

      testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {

        @Override

        public Tuple2<Double, Double> call(LabeledPoint p) {

          return new Tuple2<>(model.predict(p.features()), p.label());

        }

      });

    Double testErr =

      1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {

        @Override

        public Boolean call(Tuple2<Double, Double> pl) {

          return !pl._1().equals(pl._2());

        }

      }).count() / testData.count();

    System.out.println("Test Error: " + testErr);

    System.out.println("Learned classification forest model:\n" + model.toDebugString());

    // Save and load model

    model.save(jsc.sc(), "target/tmp/myRandomForestClassificationModel");

    RandomForestModel sameModel = RandomForestModel.load(jsc.sc(),

      "target/tmp/myRandomForestClassificationModel");

    // $example off$

    jsc.stop();

  }

}

运行结果

randforest_regressor

Scala程序

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.mllib.util.MLUtils

import org.apache.spark.SparkConf

import org.apache.spark.SparkContext

import org.apache.spark.mllib.util.MLUtils

import org.apache.spark.mllib.tree.RandomForest

import org.apache.spark.mllib.tree.model.RandomForestModel

/**

  * Created by hui on 2017/11/21.

  * 使用随机森林进行回归

  */

object randforest_regressor {

  def main(args:Array[String]): Unit = {

    val conf = new SparkConf().setAppName("randforest_regressor").setMaster("local")

    val sc = new SparkContext(conf)

    val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")

    val splits = data.randomSplit(Array(0.7, 0.3))

    val (trainingData, testData) = (splits(0), splits(1))

    val numClass = 2

    val categoricalFeaturesInfo = Map[Int, Int]()

    val numTrees = 3

    val featureSubsetStrategy = "auto"

    val impurity = "variance"

    val maxDepth = 4

    val maxBins = 32

    val model = RandomForest.trainRegressor(trainingData, categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins)

    val labelAndPredictions = testData.map { point =>

      val prediction = model.predict(point.features)

      (point.label, prediction)

    }

    val testMSE = labelAndPredictions.map { case (v, p) => math.pow((v - p), 2) }.mean()

    println("Test Mean Squared Error=" + testMSE)

    println("Learned regression forest model:\n" + model.toDebugString)

    model.save(sc, "myModelPath")

    val sameModel = RandomForestModel.load(sc, "myModelPath")

  }

}

Java程序

import java.util.HashMap;

import java.util.Map;

import scala.Tuple2;

import org.apache.spark.api.java.function.Function2;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.api.java.function.PairFunction;

import org.apache.spark.mllib.regression.LabeledPoint;

import org.apache.spark.mllib.tree.RandomForest;

import org.apache.spark.mllib.tree.model.RandomForestModel;

import org.apache.spark.mllib.util.MLUtils;

import org.apache.spark.SparkConf;

// $example off$

public class JavaRandomForestRegressionExample {

  public static void main(String[] args) {

    // $example on$

    SparkConf sparkConf = new SparkConf().setAppName("JavaRandomForestRegressionExample").setMaster("local");

    JavaSparkContext jsc = new JavaSparkContext(sparkConf);

    // Load and parse the data file.

    String datapath = "data/mllib/sample_libsvm_data.txt";

    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();

    // Split the data into training and test sets (30% held out for testing)

    JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});

    JavaRDD<LabeledPoint> trainingData = splits[0];

    JavaRDD<LabeledPoint> testData = splits[1];

    // Set parameters.

    // Empty categoricalFeaturesInfo indicates all features are continuous.

    Map<Integer, Integer> categoricalFeaturesInfo = new HashMap<>();

    Integer numTrees = 3; // Use more in practice.

    String featureSubsetStrategy = "auto"; // Let the algorithm choose.

    String impurity = "variance";

    Integer maxDepth = 4;

    Integer maxBins = 32;

    Integer seed = 12345;

    // Train a RandomForest model.

    final RandomForestModel model = RandomForest.trainRegressor(trainingData,

      categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins, seed);

    // Evaluate model on test instances and compute test error

    JavaPairRDD<Double, Double> predictionAndLabel =

      testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {

        @Override

        public Tuple2<Double, Double> call(LabeledPoint p) {

          return new Tuple2<>(model.predict(p.features()), p.label());

        }

      });

    Double testMSE =

      predictionAndLabel.map(new Function<Tuple2<Double, Double>, Double>() {

        @Override

        public Double call(Tuple2<Double, Double> pl) {

          Double diff = pl._1() - pl._2();

          return diff * diff;

        }

      }).reduce(new Function2<Double, Double, Double>() {

        @Override

        public Double call(Double a, Double b) {

          return a + b;

        }

      }) / testData.count();

    System.out.println("Test Mean Squared Error: " + testMSE);

    System.out.println("Learned regression forest model:\n" + model.toDebugString());

    // Save and load model

    model.save(jsc.sc(), "target/tmp/myRandomForestRegressionModel");

    RandomForestModel sameModel = RandomForestModel.load(jsc.sc(),

      "target/tmp/myRandomForestRegressionModel");

    // $example off$

    jsc.stop();

  }

}

运行结果

svm

Scala程序

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.mllib.classification.{SVMModel, SVMWithSGD}

import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics

import org.apache.spark.mllib.util.MLUtils

/**

  * Created by hui on 2017/11/21.

  * 支持向量机分类

  */

object svm {

  def main(args:Array[String]): Unit = {

    val conf = new SparkConf().setAppName("svm").setMaster("local")

    val sc = new SparkContext(conf)

    val data=MLUtils.loadLibSVMFile(sc,"data/mllib/sample_libsvm_data.txt")

    val splits=data.randomSplit(Array(0.6,0.4),seed=11L)

    val training=splits(0).cache()

    val test=splits(1)

    val numIterations=100

    val model=SVMWithSGD.train(training,numIterations)

    model.clearThreshold()

    val scoreAndLabels=test.map{point=>

      val score=model.predict(point.features)

      (score,point.label)

    }

    val metrics=new BinaryClassificationMetrics(scoreAndLabels)

    val auROC=metrics.areaUnderROC()

    println("Area under ROC="+ auROC)

    model.save(sc,"my_svm")

    val sameModel=SVMModel.load(sc,"my_svm")

  }

}

Java程序

import org.apache.spark.SparkConf;

import org.apache.spark.SparkContext;

// $example on$

import scala.Tuple2;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.function.Function;

import org.apache.spark.mllib.classification.SVMModel;

import org.apache.spark.mllib.classification.SVMWithSGD;

import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics;

import org.apache.spark.mllib.regression.LabeledPoint;

import org.apache.spark.mllib.util.MLUtils;

// $example off$

/**

 * Example for SVMWithSGD.

 */

public class JavaSVMWithSGDExample {

  public static void main(String[] args) {

    SparkConf conf = new SparkConf().setAppName("JavaSVMWithSGDExample").setMaster("local");

    SparkContext sc = new SparkContext(conf);

    // $example on$

    String path = "data/mllib/sample_libsvm_data.txt";

    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();

    // Split initial RDD into two... [60% training data, 40% testing data].

    JavaRDD<LabeledPoint> training = data.sample(false, 0.6, 11L);

    training.cache();

    JavaRDD<LabeledPoint> test = data.subtract(training);

    // Run training algorithm to build the model.

    int numIterations = 100;

    final SVMModel model = SVMWithSGD.train(training.rdd(), numIterations);

    // Clear the default threshold.

    model.clearThreshold();

    // Compute raw scores on the test set.

    JavaRDD<Tuple2<Object, Object>> scoreAndLabels = test.map(

      new Function<LabeledPoint, Tuple2<Object, Object>>() {

        public Tuple2<Object, Object> call(LabeledPoint p) {

          Double score = model.predict(p.features());

          return new Tuple2<Object, Object>(score, p.label());

        }

      }

    );

    // Get evaluation metrics.

    BinaryClassificationMetrics metrics =

      new BinaryClassificationMetrics(JavaRDD.toRDD(scoreAndLabels));

    double auROC = metrics.areaUnderROC();

    System.out.println("Area under ROC = " + auROC);

    // Save and load model

    model.save(sc, "target/tmp/javaSVMWithSGDModel");

    SVMModel sameModel = SVMModel.load(sc, "target/tmp/javaSVMWithSGDModel");

    // $example off$

    sc.stop();

  }

}

运行结果

posted @ 2017-12-21 22:03  尘世中一个迷途小书童  阅读(604)  评论(0编辑  收藏  举报