每日笔记-LSTM

今天,搞了一段代码,但没有达到应有的效果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import numpy as np
 
# 设置随机种子以便结果可重复
torch.manual_seed(42)
 
# 定义一个更复杂的LSTM模型
class ComplexLSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(ComplexLSTMModel, self).__init__()
        self.hidden_size = hidden_size
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers=2# 增加了一个LSTM层
        self.fc = nn.Linear(hidden_size, output_size)
 
    def forward(self, input):
        lstm_out, _ = self.lstm(input.view(len(input), 1, -1))
        output = self.fc(lstm_out.view(len(input), -1))
        return output[-1]
 
# 准备数据
input_size = 1
hidden_size = 8 
output_size = 1
lr = 0.01
num_epochs = 100
 
# 生成一些示例数据
data = np.sin(np.arange(0, 100, 0.1))
 
# 定义模型、损失函数和优化器
model = ComplexLSTMModel(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
 
# 训练模型
for epoch in range(num_epochs):   
    inputs = torch.Tensor(data[:-1]).view(-1, 1, 1)
    labels = torch.Tensor(data[1:])
 
    optimizer.zero_grad()
    outputs = model(inputs)
 
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()
 
    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
 
# 预测
with torch.no_grad():
    future = 100
    # 用训练数据最后一个数据点开始预测
    pred_data = [data[-1]]
    for _ in range(future):
        inputs = torch.Tensor([pred_data[-1]]).view(-1, 1, 1)
        pred = model(inputs)
        pred_data.append(pred.item())
 
# 绘制结果
import matplotlib.pyplot as plt
plt.plot(data, label='Original data')
plt.plot(np.arange(len(data)-1, len(data) + future), pred_data, label='Predictions')
plt.legend()
plt.show()

  结果如图:

 没有达到想象的效果

 

-----------------------------------

仔细阅读后,找到了问题症结所在。

修改后的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.nn as nn
import numpy as np
 
torch.manual_seed(42)
 
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.hidden_size = hidden_size
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers=2)
        self.fc = nn.Linear(hidden_size, output_size)       
     
    def forward(self, input):
        lstm_out, self.hidden = self.lstm(input.view(len(input), 1, -1))
        output = self.fc(lstm_out.view(len(input), -1))
        return output[-1]
 
input_size = 1
hidden_size = 16 
output_size = 1
lr = 0.001
num_epochs = 100
 
data = np.sin(np.arange(0, 100, 0.1))
# 制作训练数据
inputs = []
labels = []
for i in range(20, len(data)):
    inputs.append(data[i-20:i])
    labels.append(data[i])
 
model = LSTMModel(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
 
for epoch in range(num_epochs):
    for i in range(len(inputs) - 100):
        optimizer.zero_grad()
        outputs = model(torch.Tensor(inputs[i]).view(-1, 1, 1))
        loss = criterion(outputs, torch.Tensor([labels[i]]))
        loss.backward()       
        optimizer.step()
 
    if (epoch+1) % 1 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.6f}')
 
# 预测
pred_data = []
with torch.no_grad():
    for i in range(len(inputs) - 100, len(inputs)):       
        outputs = model(torch.Tensor(inputs[i]).view(-1, 1, 1))
        pred_data.append(outputs.item())
         
import matplotlib.pyplot as plt
plt.plot(data[:-100], label='Original data')
plt.plot(np.arange(len(data) - 100, len(data)), pred_data, label='Predictions')
plt.legend()
plt.show()

  显示图像正常 !

 

posted on   金凯旋  阅读(8)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 【杂谈】分布式事务——高大上的无用知识?
历史上的今天:
2023-02-20 ctp认证权限
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

导航

统计

点击右上角即可分享
微信分享提示