HDU5748:bellovin

Description

There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows: 

(a) The setup time for the first wooden stick is 1 minute. 
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup. 

You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2). 

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case, and the second line contains n 2 positive integers l1, w1, l2, w2, ..., ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces. 

Output

The output should contain the minimum setup time in minutes, one per line. 

Sample Input

3 
5 
4 9 5 2 2 1 3 5 1 4 
3 
2 2 1 1 2 2 
3 
1 3 2 2 3 1

Sample Output

2
1
3

摘自大神的 lower——bound解释

函数lower_bound()在first和last中的前闭后开区间进行二分查找,返回大于或等于val的第一个元素位置。如果所有元素都小于val,则返回last的位置

举例如下:

一个数组number序列为:4,10,11,30,69,70,96,100.设要插入数字3,9,111.pos为要插入的位置的下标

pos = lower_bound( number, number + 8, 3) - number,pos = 0.即number数组的下标为0的位置。

pos = lower_bound( number, number + 8, 9) - number, pos = 1,即number数组的下标为1的位置(即10所在的位置)。

pos = lower_bound( number, number + 8, 111) - number, pos = 8,即number数组的下标为8的位置(但下标上限为7,所以返回最后一个元素的下一个元素)。

所以,要记住:函数lower_bound()在first和last中的前闭后开区间进行二分查找,返回大于或等于val的第一个元素位置。如果所有元素都小于val,则返回last的位置,且last的位置是越界的!!~

返回查找元素的第一个可安插位置,也就是“元素值>=查找值”的第一个元素的位置

给你一个序列 求出以每个数结尾的最大递增子序列长度

普通方法会超时  学习大神的low_bound 之前不会用 看看注解就明白了

#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int s[100001];
int a[100001];
int dp[100001];
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int n;
		scanf("%d",&n);
		for(int i=1;i<=n;i++)
	    {
			scanf("%d",&s[i]);
			dp[0]=1;
			a[i]=INF;
		}
		int ans;
		for(int i=1;i<=n;i++)
		{
		  ans=lower_bound(a+1,a+n+1,s[i])-a;
		  dp[i]=ans;
		  a[ans]=s[i];	
		}
		int q=0;
		for(int i=1;i<=n;i++)
		{
		
			if(q!=0)
			printf(" ");
			printf("%d",dp[i]);
				q++;
		}
		printf("\n");
	}
	return 0;
}


posted @ 2019-12-12 09:00  千金一发  阅读(63)  评论(0编辑  收藏  举报