LightOJ 1305Area of a Parallelogram
Description
A parallelogram is a quadrilateral with two pairs of parallel sides. See the picture below:
Fig: a parallelogram
Now you are given the co ordinates of A, B and C, you have to find the coordinates of D and the area of the parallelogram. The orientation ofABCD should be same as in the picture.
Input
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing six integers Ax, Ay, Bx, By, Cx, Cy where (Ax, Ay) denotes the coordinate of A, (Bx, By) denotes the coordinate of B and (Cx, Cy) denotes the coordinate of C. Value of any coordinate lies in the range [-1000, 1000]. And you can assume that A, Band C will not be collinear.
Output
For each case, print the case number and three integers where the first two should be the coordinate of D and the third one should be the area of the parallelogram.
Sample Input
3
0 0 10 0 10 10
0 0 10 0 10 -20
-12 -10 21 21 1 40
Sample Output
Case 1: 0 10 100
Case 2: 0 -20 200
Case 3: -32 9 1247
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std;
int main()
{
int t;
scanf("%d",&t);
int ans=0;
while(t--)
{
ans++;
double x1,y1,x2,y2,x3,y3;
scanf("%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3);
int x4=(int)x1+x3-x2;
int y4=(int)y1+y3-y2;
double c=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
double a=sqrt((x2-x3)*(x2-x3)+(y2-y3)*(y2-y3));
double b=sqrt((x1-x3)*(x1-x3)+(y1-y3)*(y1-y3));
double s=abs(sqrt(1-(a*a+b*b-c*c)/(2*a*b)*(a*a+b*b-c*c)/(2*a*b))*a*b);
printf("Case %d: %d %d %.0lf\n",ans,x4,y4,s);
}
return 0;
}