并行学习小结
并行学习小结,直接上源代码
using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; using System.Threading.Tasks; using System.Threading; using System.Diagnostics; using System.Collections.Concurrent; public partial class test : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { UseParallel(); UsePLINQ(); } /// <summary> /// PLINQ的基本方法应用集合 /// </summary> private void UsePLINQ() { #region 并行集合运算,Environment.ProcessorCount - 1 给一个处理器出来处理其他任务 ConcurrentDictionary<int, string> cds = new ConcurrentDictionary<int, string>();//并行考虑用的集合 Parallel.For(0, 3000, i => { cds.TryAdd(i, Math.Sqrt(i).ToString()); }); var q1 = from c in cds.Values.AsParallel().WithDegreeOfParallelism(Environment.ProcessorCount - 1) select c;//直接获取该集合,Environment.ProcessorCount - 1 给一个处理器出来处理其他任务 #endregion #region 并行常用的运算 ConcurrentBag<int> bags = new ConcurrentBag<int>();//线程安全的集合 var list = ParallelEnumerable.Range(0,3000);//生成并行集合 list.ForAll(i => { bags.Add(i); }); Response.Write("bags长度:" + bags.Count+"<br/>"); Response.Write("list整数和:" + list.Sum() + "<br/>"); Response.Write("list最大值:" + list.Max() + "<br/>"); Response.Write("list最小值:" + list.Min() + "<br/>"); Response.Write("list平均值:" + list.Average() + "<br/>"); Response.Write("list默认值:" + list.FirstOrDefault() + "<br/>"); #endregion #region 先并行分组,在对每组并行查询统计 List<Student> list2 = new List<Student>() { new Student() { ID = 1, Name = "jack", Age = 20 }, new Student() { ID = 1, Name = "mary", Age = 25 }, new Student() { ID = 1, Name = "joe", Age = 29 }, new Student() { ID = 1, Name = "Aaron", Age = 25 } }; var map = list2.AsParallel().ToLookup(i => i.Age,count=>1);//化简统计 var reduce = from IGrouping<int, int> singleMap in map.AsParallel() select new { Age = singleMap.Key, Count = singleMap.Count() }; reduce.ForAll(i =>{ Response.Write(string.Format("当前Age={0}的人数有:{1}人<br/>", i.Age, i.Count)); }); #endregion foreach (var o in q1) { Response.Write(o + "<br/>"); } } /// <summary> /// Parallel的基本使用方法集合 /// </summary> private void UseParallel() { #region 并行查询和并行输出 List<string> lists = new List<string>(); for (int i = 0; i < 1000; i++) { lists.Add(i.ToString()); } var q1 = from p in lists.AsParallel() where Convert.ToInt32(p) > 100 select p;// 并行查询 q1.ForAll<string>(p => { Response.Write(p + "<br/>");//并行输出,注意观察输出结果不是有序的 }); #endregion #region 串行执行任务 Stopwatch sw = new Stopwatch(); sw.Start(); Run1(); Run2(); Response.Write("串行执行时间:" + sw.ElapsedMilliseconds + "<br/>"); #endregion #region 并行执行任务 sw.Restart(); Parallel.Invoke(Run1, Run2); Response.Write("并行执行时间:" + sw.ElapsedMilliseconds + "<br/>"); #endregion #region 并行赋值 List<int> mylist = new List<int>(); Parallel.ForEach(Partitioner.Create(0, 5000), i => { for (int m = i.Item1; m < i.Item2; m++) { mylist.Add(m); } }); #endregion #region 并行 退出循环 Break和Stop List<int> mylist2 = new List<int>(); Parallel.For(0, 5000, (i, state) => { if (mylist2.Count == 50) { state.Break(); return; } mylist2.Add(i); }); #endregion #region 并行抛出异常处理 try { Parallel.Invoke(Run1, Run2, Run3); } catch (AggregateException ex) { foreach (var single in ex.InnerExceptions) { Response.Write(single.Message + "<br/>"); } } #endregion } private void Run1() { Thread.Sleep(3000); } private void Run2() { Thread.Sleep(5000); } private void Run3() { Thread.Sleep(1000); } private void Run4(int ms) { Thread.Sleep(ms * 100); } } public class Student { public int ID { get; set; } public string Name { get; set; } public int Age { get; set; } public DateTime CreateTime { get; set; } }